
MODEL THEORY

Tapani Hyttinen

In these notes I will look at that part of ”pre-Morley’s theorem era” model
theory that I feel is most relevant for the current trends in model theory. Some of
the topics are not chosen because of the theorems but because of the methods behind
the proofs. Only the surface of each topic chosen is scratched, for more see [CK] or
[Ho]. When we attach some name(s) of persons to theorems, we just indicate the
name of the theorem commonly used, the person(s) are not always the one(s) that
actually proved the theorem originally. For the history, see the historical notes in
[CK].
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1. First-order logic

In this section we recall the basic definitions of the first-order logic.

1.1 Definition. A vocabulary L is a collection of relation, function and
constant symbols. Each relation symbol R and function symbol f come with the
arity #R,#f ∈ IN − {0} .

We let L = {Ri, fj, ck| i ∈ I∗, j ∈ J∗, k ∈ K∗} be a fixed but arbitrary
vocabulary.

1.2 Definition. The collection of (L -)terms is defined as follows:
(i) variables vi , i ∈ IN , are terms,
(ii) constant symbols ck , k ∈ K∗ , are terms,
(iii) if n = #fj , j ∈ J∗ , and t1, ..., tn are terms, then fj(t1, ..., tn) is a term.

1.3 Definition. The collection of atomic (L -)formulas is defined as follows:
(i) if t and u are terms, then t = u is an atomic formula,
(ii) if n = #Ri , i ∈ I∗ , and t1, ..., tn are terms, then Ri(t1, ..., tn) is an atomic

formula,
(iii) > is an atomic formula.

The formula > is needed for the elimination of quantifiers in the case L does
not contain constant symbols, see section 5.

1.4 Definition. The collection of (L -)formulas is defined as follows:
(i) atomic formulas are formulas,
(ii) if φ is a formula, then ¬φ is a formula,
(iii) if φ and ψ are formulas, then (φ ∧ ψ) is a formula,
(iv) if φ is a formula and i ∈ IN , then ∃viφ is a formula.
By Lωω we denote the set of all L -formulas.

The following notation is used:

φ ∨ ψ = ¬(¬φ ∧ ¬ψ)

φ→ ψ = ¬φ ∨ ψ

φ↔ ψ = (φ→ ψ) ∧ (ψ → φ)

∀viφ = ¬∃vi¬φ.

1.5 Definition. The notion vi is free in φ is defined as follows:
(i) φ is atomic: vi is free in φ if vi appears in φ ,
(ii) φ = ¬ψ : vi is free in φ if it is free in ψ ,
(iii) φ = ψ ∧ θ : vi is free in φ if it is free in ψ or θ ,
(iv) φ = ∃vjψ : vi is free in φ if it is free in ψ and i 6= j .

2



A sentence is a formula in which no vi is free.

If x = (x1, ..., xn) is a sequence of variables (when we write like this we assume
that for k 6= m , xk 6= xm ), then the notation φ(x) means that if vi is free in φ then
vi ∈ {x1, ..., xn} . Similarly for a term t , t(x) means that if vi appears in t , then
vi ∈ {x1, ..., xn} . Often we split x into two (or more) sequences y and z and write
φ(y, z) in place of φ(x).

1.6 Definition. A (L -)structure (i.e. model) is a sequence

A = (A, RA
i , f

A
j , c

A
k )i∈I∗,j∈J∗,k∈K∗

where

(i) A is a non-empty set (the universe of A , when we want to make a distinction
between the model and its universe, we write dom(A) for the universe),

(ii) RAi ⊆ A#Ri ,

(iii) fA
j : A#fj → A ,

(iv) cAk ∈ A .

When it does not risk confusion we write just Ri = RA
i etc.

1.7 Definition. For a term t(x) , x = (x1, ..., xn) , structure A and a =
(a1, ..., an) ∈ An , tA(a) is defined as follows:

(i) t = vi : t
A(a) = am , where m is such that vi = xm ,

(ii) t = ck : tA(a) = cAk ,

(iii) t = fj(t1, ..., tm) : tA(a) = fA
j (tA1 (a), ..., tAm(a)) .

1.8 Definition (Tarski). For a formula φ(x) , x = (x1, ..., xn) , structure A
and a = (a1, ..., an) ∈ An , A |= φ(a) is defined as follows:

(i) φ = t = u : A |= φ(a) if tA(a) = uA(a) ,

(ii) φ = Ri(t1, ..., tm) : A |= φ(a) if (tA1 (a), ..., tAm) ∈ RA
i ,

(iii) φ = > : A |= φ(a) always,

(iv) φ = ¬ψ : A |= φ(a) if A 6|= ψ(a) ,

(v) φ = ψ ∧ θ : A |= φ(a) if A |= ψ(a) and A |= θ(a) ,

(vi) φ = ∃viψ : A |= φ(a) if there is b ∈ A such that A |= ψ(b, a1, ..., an) for
ψ = ψ(vi, x1, ..., xn) .

1.9 Remark. In the Definition 1.8 (v) we assumed that vi 6∈ {x1, ..., xn} .
This can be done without loss of generality, see the course Matemaattinen logiikka.
This sloppy notation will be used regularly in these notes.

1.10 Fact. For all φ(x) , x = (x1, ..., xn) , and y = (y1, ..., yn) , there is ψ(y)
such that for all A and a ∈ An , A |= φ(a) iff A |= ψ(a) .

Proof. See the course Matemaattinen logiikka.
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1.11 Definition. For a structure A , a relation R ⊆ An is definable (in the
vocabulary L), if there are a formula φ(x, y) , x = (x1, ..., xn) and y = (y1, ..., ym) ,
and b ∈ Am such that for all a ∈ An , a ∈ R iff A |= φ(a, b) . The elements of b
are called the parameters of the definition. If the parameters are not needed, we say
that R is definable without parameters. A function f : An → A is definable if the
relation {(a1, ..., an+1) ∈ An+1| f(a1, ..., an) = an+1} is definable.

1.12 Exercise. Show that the set of integers is definable without parameters
in (C,+,×, exp, 0, 1) , where + and × are the addition and multiplication of complex
numbers and exp(x) = ex .

2. On ordinals and cardinals

In this section we recall some facts from set theory that are needed throughout
these notes.

2.1 Definition. Suppose R ⊆ X2 . We say that (X,R) is a well-ordering and
alternatively that R well-orders X if

(i) (X,R) is a linear ordering i.e. for all x, y, z ∈ X , (a)-(c) below holds:
(a) if (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R ,
(b) if (x, y) ∈ R , then (y, x) 6∈ R ,
(c) (x, y) ∈ R or x = y or (y, x) ∈ R ,
(ii) there are no xn ∈ X , n ∈ IN , such that for all n ∈ IN , (xn+1, xn) ∈ R .

Notice that if (X,<) is a well-ordering and Y ⊆ X is not empty, then there is
a < -least element in Y .

2.2 Definition. We say that a set α is an ordinal if (α,∈) is a well-ordering
and α is transitive i.e. for all x and y , if y ∈ x ∈ α , then y ∈ α . The class of all
ordinals is denoted by On .

2.3 Fact.
(i) ∈ well-orders the class On (for ordinals α and β , instead of writing α ∈ β

we write α < β ).
(ii) If α is an ordinal and x ∈ α , then x is an ordinal i.e. α = {β ∈ On| β < α} .
(iii) For every well-ordering (X,R) there are a unique ordinal α and a unique

bijection π : X → α such that for all x, y ∈ X , (x, y) ∈ R iff π(x) < π(y) .
(iv) For ordinals α and β , α ⊆ β iff α = β or α < β .
(v) ∅ is an ordinal (usually denoted by 0), if α is an ordinal then α ∪ {α} is

the least ordinal strictly greater than α (usually denoted by α+ 1) and if αi , i ∈ I ,
are ordinals, then

⋃
i∈I αi is the least ordinal greater or equal to every αi .

Proof. Basic set theory course or [Je].
Finite ordinals and natural numbers are often thought as the same, i.e. 0 = ∅ ,

1 = 0+1 = ∅∪{∅} = {∅} , 2 = 1+1 = {∅}∪{{∅}} = {∅, {∅}} etc. The set of all finite
ordinals is called ω (by Fact 2.3 (v), ω is an ordinal) and so ω = IN. An ordinal α
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is a successor ordinal if there is an ordinal β such that α = β + 1. Otherwise α is
called a limit ordinal.

Many of our constructions and proofs are based on the following recursion and
induction principles.

2.4 Fact.
(i) Suppose G is a function from sets to sets definable in the vocabulary of set

theory (i.e. a class function). Then there is a unique class function F from On to
sets such that for all ordinals α , F (α) = G(F � α) .

(ii) Suppose P is a collection of sets definable in the vocabulary of set theory
(i.e. a class) and X ⊆ On is also a class. Then X ⊆ P if for all ordinals α ∈ X the
following holds:

(*) if for all β ∈ X ∩ α , β ∈ P , then α ∈ P .

Proof. Basic set theory course or [Je].

2.5 Fact (Schröder-Bernstein). If there are injections f : X → Y and
g : Y → X , then there is a bijection π : X → Y .

Proof. Basic set theory course or [Je].

2.6 Definition. We say that an ordinal α is a cardinal if for all β < α , there
is no injection (⇔ bijection by Schröder-Bernstein) from α to β .

Notice that every finite ordinal is a cardinal as well as ω and that infinite
cardinals are limit ordinals.

2.7 Definition. For all ordinals α , a cardinal ωα (often also called ℵα ) is
defined to be the least infinite cardinal strictly greater than ωβ for any β < α .

Notice that the class function α 7→ ωα exists by Fact 2.4 (i) and that ω0 = ω
(= IN). For a cardinal κ , by κ+ we denote the least cardinal > κ (so if κ = ωα ,
κ+ = ωα+1 ).

2.8 Fact.
(i) For every set X there are a cardinal κ and a bijection π : X → κ . Further-

more such κ is unique and is denoted by |X| and called the cardinality of X (or just
the size or power of X ).

(ii) Suppose that at least one of X and Y is infinite and that neither is empty.
Then |X ∪ Y | = |X × Y | = max{|X|, |Y |} (usually this cardinal is denoted by
|X| + |Y |).

(iii) Suppose I is infinite and Xi , i ∈ I , are non-empty and distinct. Then
|
⋃
i∈I Xi| = max{κ, |I|} , where κ =

⋃
i∈I |Xi| .

(iv) Suppose X is infinite and let P (X) be the set of all subsets of X and XX

be the set of all function from X to X . Then |P (X)| = |XX | > |X| . We denote
|P (X)| by 2|X| (so 2ω is the cardinality of the continuum).

(v) If κ is a cardinal and α < κ+ , then there is no function f : α → κ+ such
that ∪i<αf(i) = κ+ (i.e. successor cardinals are regular).

Proof. Basic set theory course or [Je].
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3. Compactness

3.1 Definition. Let F ⊆ P (X) .
(i) F has the finite intersection property if for all Xi ∈ F , i < n ,

⋂
i<nXi 6= ∅ .

(ii) F is a filter if X ∈ F , ∅ 6∈ F , if Z, Y ∈ F , then Z ∩ Y ∈ F and if Z ∈ F
and Z ⊆ Y ⊆ X , then Y ∈ F .

(iii) F is an ultrafilter if it is a filter and for all Y ⊆ X , either Y ∈ F or
X − Y ∈ F .

3.2 Lemma. Suppose F ⊆ P (X) has the finite intersection property. Then
there is an ultrafilter U ⊆ P (X) such that F ⊆ U .

Proof. Let Xi , i < α , enumerate all elements of P (X). By recursion we define
an increasing sequence of subsets Ui of P (X) with the finite intersection property:

i = 0: Ui = F .
i = j+1: If Uj∪{Xj} has the finite intersection property, we let Ui = Uj∪{Xj} .

Otherwise Uj ∪{(X−Xj)} has the finite intersection property and we let this be Ui .
(If (

⋂
k<n Yj)∩Xi = ∅ and (

⋂
k<m Zj)∩(X−Xi) = ∅ then (

⋂
k<n Yj)∩(

⋂
k<m Zj) =

∅ .)
i is limit: Ui =

⋃
j<i Uj .

It is easy to see that U =
⋃
i<α Ui is as wanted (exercise)

Suppose Aη , η ∈ X , are models and U ⊆ P (X) is an ultrafilter. By Πη∈XAη

we mean the set of all f : X → ∪η∈XAη such that for all η ∈ X , f(η) ∈ Aη . Then
f ≡ g mod U if {η ∈ X| f(η) = g(η)} ∈ U is an equivalence relation (exercise). By
f/U we mean the equivalent class of f and let Πη∈XAη/U be the set of all these
equivalence classes. We make Πη∈XAη/U into an L -structure A (also denoted by
Πη∈XAη/U ) by adding the following interpretations:

(g1/U, ..., gn/U) ∈ RA
i if {η ∈ X| (g1(η), ..., gn(η)) ∈ R

Aη

i } ∈ U , where n =
#Ri ,

fA
j (g1/U, ..., gn/U) = g/U , where n = #fj and g(η) = f

Aη

j (g1(η), ..., gn(η)),

cAk = g/U , where g(η) = cAn

k .
We notice that these definitions do not depend on the representatives of the equiva-
lence classes g1/U ,...,gn/U (exercise).

3.3 Lemma. For all terms t = t(x) , x = (x1, ..., xn) , A = Πη∈XAη/U
and ai ∈ Πη∈XAη , 1 ≤ i ≤ n , tA(a1/U, ..., an/U) = g/U , where g is such that
g(η) = tAη (ai(η), ..., an(η)) .

Proof. By induction on t : For variables and constants the claim is the definition
of the interpretation. So suppose t(x) = f(t1(x), ..., tm(x)), f ∈ L a function symbol.
By the induction assumption, for 1 ≤ k ≤ m , tAk (a1/U, ..., an/U) = gk/U , where

gk(η) = t
Aη

k (a1(η), ..., an(η)). Then tA(a1/U, ..., an/U) = fA(g1/U, ..., gn/U). By
the definition of fA ,

fA(g1/U, ..., gn/U) = g/U , where
g(η) = fAη(g1(η), ..., gm(η)) =

fAη (t
Aη

1 (a1(η), ..., an(η)), ..., t
Aη
m (a1(η), ..., an(η))) = tAη(ai(η), ..., an(η)).
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3.4 Theorem ( Los). For all formulas φ , Πη∈XAη/U |= φ(g1/U, ..., gn/U) iff
{η ∈ X| Aη |= φ(g1(η), ..., gn(η))} ∈ U .

Proof. Easy induction on φ (exercise)

3.5 Definition. A collection of sentences is called a theory. If T is a theory,
we say that it is consistent if it has a model i.e. there is a structure A such that
A |= φ for all φ ∈ T (i.e. A |= T ). If x = (x1, ..., xn) and Σ is a collection of
formulas of the form ψ(x) , then we write that Σ |= φ(x) if for all A and a ∈ An ,
A |= φ(a) if A |= ψ(a) for all ψ ∈ Σ . In particular, for a theory T and a sentence
φ , we write T |= φ if every model of T is a model of φ . If T = ∅ , we write just
|= φ .

3.6 Compactness theorem. If every finite T ′ ⊆ T is consistent, then T is
consistent.

Proof. We prove this by induction on |T | . For finite T the claim is trivial.
So we may assume that κ = |T | is infinite. Let φi , i < κ , enumerate T . By the
induction assumption, for all i < κ , there is Ai such that Ai |= φj for all j ≤ i .
Let F = {κ − α| α < κ} . Then F has the finite intersection property and thus
there is an ultrafilter U extending F by Lemma 3.2. By  Los, since for all α < κ ,
κ− α ⊆ {i < κ| Ai |= φα} and κ− α ∈ U , for all α < κ , Πη∈XAη/U |= φα .

Notice that compactness theorem implies the following: if Σ |= φ , then there is
finite Σ′ ⊆ Σ such that Σ′ |= φ (exercise, see fact 4.4 below).

In the following example, we let L = {+,×,−, 0, 1} , where + and × are 2-ary
function symbols, − is 1-ary function symbol and 0 and 1 are constant symbols. In
stead of +(x, y) we write x + y and the same for × . (The function symbol − is
included for convenience for section 6, it is not really needed.) We let Tf consist of
the following sentences:

∀v0∀v1∀v2(v0 + (v1 + v2) = (v0 + v1) + v2),
∀v0∀v1(v0 + v1 = v1 + v0),
∀v0(v0 + 0 = v0),
∀v0(v0 + (−v0) = 0),
∀v0∀v1∀v2(v0 × (v1 × v2) = (v0 × v1) × v2),
∀v0∀v1(v0 × v1 = v1 × v0),
∀v0(v0 × 1 = v0),
¬0 = 1,
∀v0∃v1((v0 = 0) ∨ (v0 × v1 = 1)),
∀v0∀v1∀v2(v0 × (v1 + v2) = (v0 × v1) + (v0 × v2)),
∀v0∀v1∀v2((v0 + v1) × v2 = (v0 × v2) + (v1 × v2)).

So A |= Tf iff A is a field.
For n ∈ IN, the notation nt , t a term, is defined as follows: 0t = 0 (here the

first 0 is the natural number and the second is the constant) and (n+ 1)t = nt+ t .
Similarly t0 = 1 and tn+1 = tn × t . Then we let

Tf0 = Tf ∪ {¬p1 = 0| p a prime}
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and for primes p ,
Tfp

= Tf ∪ {p1 = 0} .
Then A |= Tf0 iff A is a field of characteristic 0 and A |= Tfp

iff A is a field of
characteristic p .

3.7 Example. For all L -sentences φ , if Tf0 |= φ then there is n such that
Tfp

|= φ for all p > n .

Proof. Suppose not. Let φ witness this. Then X = {p ∈ IN| Tfp
6|= φ} is

infinite. For all p ∈ X choose Ap |= Tfp
so that Ap 6|= φ . Let F consist of sets

{p ∈ X| p > m} , m ∈ IN. Then F has the finite intersection property and can be
extended to an ultrafilter U . By  Los, A = Πp∈XAp/U |= Tf and A 6|= φ . Also for
all primes q , the set of p ∈ X such that Ap |= q1 = 0 contains at most q . Thus by
 Los, A |= ¬q1 = 0 for all primes q i.e. A |= Tf0 , a contradiction.

4. Tarski-Vaught

4.1 Definition. Suppose A and B are structures, X ⊆ A and f : X → B .
(i) We say that f is a partial isomorphism from A to B if for all atomic φ(x) ,

x = (x1, ..., xn) and a ∈ Xn , A |= φ(a) iff B |= φ(f(a)) .
(ii) We say that f is a partial elementary map from A to B if for all formulas

φ(x) , x = (x1, ..., xn) and a ∈ Xn , A |= φ(a) iff B |= φ(f(a)) .
(iii) f is embedding if it is a partial isomorphism and X = A .
(iv) f is elementary embedding if it is a partial elementary map and X = A .
(v) f is isomorphism if it is an embedding and surjection. If in addition B = A ,

f is called an automorphism.
(vi) A is a submodel of B (denoted A ⊆ B ) if the identity function idA is

an embedding. A is an elementary submodel of B (denoted A � B ) if idA is an
elementary embedding.

Abusing the notation, if 4.1 (i) (4.1 (ii)) holds we write that f : A → B is a
partial isomorphism (elementary map) although the domain of f may not be the
whole A . Notice that if f : A → B is a partial isomorphism (partial elementary
map), then also f−1 : B → A is a partial isomorphism (partial elementary map).

4.2 Fact. If f is an isomorphism, then f is an elementary embedding.

Proof. The course Matemaattinen logiikka.
Notice that f : A → B is an (elementary) embedding iff f is an isomorphism

between A and some (elementary) substructure of B . Also notice that if A ⊆ B and
a ∈ An and φ(x), x = (x1, ..., xn) is quantifier free (i.e. no quantifier appear in φ),
then A |= φ(a) iff B |= φ(a) (exercise).

4.3 Definition. Let A be a structure and A ⊆ A . By L(A) we mean a
vocabulary we get from L by adding new constants a for all a ∈ A . (A, A) means
an L(A) -structure we get from A by interpreting aA = a . By Th(A) we mean
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the set of all L -sentences true in A and so by Th(A, A) we mean the set of all
L(A) -sentences true in (A, A) .

For a formula φ and constant c , φ(c/xi) is defined as follows:
(i) if φ is atomic then φ(c/x) is what we get from φ by replacing x by c

everywhere,
(ii) if φ = ¬ψ then φ(c/x) = ¬(ψ(c/x)) ,
(iii) if φ = ψ ∧ θ then φ(c/x) = ψ(c/x) ∧ θ(c/x) ,
(iv) if φ = ∃viψ , then φ(c/x) = φ if vi = x and otherwise φ(c/x) = ∃vi(ψ(c/x)) .
For φ(y, x) , x = (x1, ..., xn) and a = (a1, ..., an) ∈ An , we write φ(y, a) instead

of φ(a1/x1)...(an/xn) .

4.4 Fact. A |= φ(a) iff (A, A) |= φ(a) .

Proof. The course Matemaattinen logiikka.

4.5 Lemma. If A is infinite and κ is a cardinal, then there is B of cardinality
≥ κ such that A � B . (In particular, the Hanf number of the first-order logic is ω .)

Proof. Let L∗ = L(A) ∪ {ci| i < κ} , where ci are new constant symbols. Let
T ∗ = Th(A,A) ∪ T where T = {¬ci = cj | i < j < κ} . Since A is infinite, for all
finite T ′ ⊆ T , we can interpret the constants ci in (A,A) so that T ′ is true in that
model. Since (A,A) |= Th(A,A), by the compactness theorem T ∗ has a model B∗ .
Clearly |B∗| ≥ κ . By renaming the elements of B∗ (i.e. by taking an isomorphic
copy of B∗ ), we may assume that for all a ∈ A , aB = a . Let B = B � L i.e. what
we get from B∗ by dropping out the interpretations for the constants in L∗−L . We
are left to show that A � B . But A |= φ(a) iff (A,A) |= φ(a) iff φ(a) ∈ T ∗ iff
B∗ |= φ(a) iff B |= φ(a).

4.6 Theorem (Tarski-Vaught). A � B if A ⊆ B and for all formulas
φ(vi, x) , x = (x1, ..., xn) and a ∈ An the following holds: If B |= ∃viφ(vi, a) , then
there is b ∈ A such that B |= φ(b, a) .

Proof. By induction on ψ(y), y = (y1, ..., ym), we show that for all b ∈ Am ,
A |= ψ(b) iff B |= ψ(b).

1. ψ is atomic: Immediate since A ⊆ B .
2. ψ = ¬φ or φ ∧ θ : Immediate by the induction assumption.
3. ψ = ∃viφ(vi, y): Two directions:
”⇒”: If A |= ψ(b), then there is c ∈ A such that A |= φ(c, b). By the induction

assumption, B |= φ(c, b) and thus B |= ψ(b).
”⇐”: If B |= ψ(b), then by the assumption, there is c ∈ A such that B |= φ(c, b).

By the induction assumption, A |= φ(c, b) and thus A |= ψ(b).
Suppose that for all γ < β < α , Aγ ⊆ Aβ . Then

⋃
β<αAβ is the structure B

such that dom(B) =
⋃
β<αAβ , RB

i =
⋃
β<αR

Aβ

i , fB
j =

⋃
β<α f

Aβ

j and cBk = cA0

k .

4.7 Corollary. Suppose that for all γ < β < α , Aγ � Aβ and let B =⋃
β<αAβ . Then for all γ < α , Aγ � B . Furthermore, if for all β < α , Aβ � C ,

then B � C .
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Proof. We repeat the proof of Tarski-Vaught and proof by induction on φ(x),
x = (x1, ..., xn), that for all a ∈ Bn , B |= φ(a) iff Aγ |= φ(a) for all γ < α such that
a ∈ An

γ . We prove the case φ = ∃viψ(vi, x), the other cases are left as an exercise:
”⇒”: Then there is b ∈ B such that B |= ψ(b, a). But then we can find

γ ≤ β < α such that b ∈ Aβ . By the induction assumption, Aβ |= ψ(b, a) and thus
Aβ |= φ(a). Since Aγ � Aβ , Aγ |= φ(a).

”⇐”: Exactly as the direction ”⇒” in the proof of Tarski-Vaught.
The furthermore part follows immediately from Tarski-Vaught (exercise).
Recall that Lωω is the set of all (L -)formulas. Notice that |Lωω| = |L| + ω .

4.8 Lemma. Suppose A ⊆ A . Then there is A ⊆ B � A such that |B| ≤
|A| + |Lωω| (i.e. the Löwenheim-Skolem number of the first-order logic is |Lωω|).

Proof. For every formula φ(vi, x), x = (x1, ..., xn) we define a function gφ(vi,x) :
An → A so that if A |= ∃viφ(vi, a), then A |= φ(gφ(vi,x)(a), a). Then we close
C = A ∪ {cAk | k ∈ K∗} under these function and under the functions fA

j (we could

drop the elements cAk from C and forget the functions fA
j and still get the same

set) i.e. we let B ⊆ A be the intersection of all D ⊆ A such that C ⊆ D and if
a ∈ Dn and g is an n -ary function as above, then g(a) ∈ D . Then |B| ≤ |A|+ |Lωω|
(see basic set theory course or [Je]). We make a model B out of B by defining:
dom(B) = B , RB

i = RA
i ∩ B#Ri , fB

j = fA
j � B and cBk = cAk . By Tarski-Vaught,

B � A .

4.9 Löwenheim-Skolem theorem. If T is a theory and it has an infinite
model, then it has a model in every cardinality κ ≥ |Lωω| .

Proof. By Lemma 4.5 T has a model A of cardinality ≥ κ . By 4.8 we can find
B � A of cardinality κ . Then B |= T .

5. Completeness and elimination of quantifiers

5.1 Definition.
(i) We say that a theory T is complete if for all sentences φ , either T |= φ or

T |= ¬φ .
(ii) We say that T is κ -categorical if upto isomorphisms T has exactly one

model of cardinality κ .

Often when one talks about complete theories, one assumes also that T is con-
sistent (inconsistent theories are not usually considered interesting). In fact unless
otherwise stated, whenever we talk about a theory T , T is assumed to be consistent.

5.2 Lemma ( Los-Vaught). If T is κ -categorical for some κ ≥ |Lωω| and T
does not have finite models, then T is complete.

Proof. Suppose not. Let φ be a sentence that witnesses this. Then by Löwen-
heim-Skolem both T ∪ {¬φ} and T ∪ {φ} have a model of size κ . This contradicts
the assumption that T is κ -categorical.
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5.3 Definition. We say that T is closed under unions if for all Ai |= T ,
i < α , the following holds: If for all i < j < α , Ai ⊆ Aj , then

⋃
i<αAi |= T .

5.4 Lemma. If T consists of sentences of the form ∀x1...∀xn∃y1...∃ymφ ,
where φ is quantifier free, then T is closed under unions.

Proof. Exercise.

5.5 Definition.
(i) T has quantifier free set amalgamation (AP for short) if for all A,B |= T and

partial isomorphism f : A → B there are B ⊆ C |= T and an embedding g : A → C
such that g � dom(f) = f .

(ii) T has quantifier free joint embedding (JEP for short) if for all A,B |= T
there are B ⊆ C |= T and an embedding f : A → C .

5.6 Lemma. If T has AP and there is A (not necessarily a model of T ) such
that for all B |= T there is an embedding f : A → B , then T has JEP.

Proof. Exercise.

5.7 Lemma. Suppose κ ≥ |Lωω| and T has JEP and is closed under unions.
Then there is a model A of T such that for all B |= T of power ≤ κ , there is an
embedding f : B → A .

Proof. Let Bi , i < α , list all models of T of power ≤ κ i.e. if B is a model of
T of power ≤ κ , then B is isomorphic with some Bi , i < α . By recursion on i ≤ α ,
we define models Ai of T as follows:

i = 0: Ai = B0 .
i = j + 1: By JEP we choose Aj ⊆ Ai |= T such that there is an embedding

f : Bj → Ai .
i is limit: Ai =

⋃
j<iAj .

Clearly A = Aα is as wanted.

5.8 Lemma. Suppose T has AP and is closed under unions and A |= T .
Then there is A ⊆ B |= T such that for all partial isomorphisms f : A → A there is
an embedding g : A → B such that g � dom(f) = f .

Proof. Let fi , i < α , list all partial isomorphism from A to A . We define
models Bi of T , i ≤ α , as follows:

i = 0: Bi = A .
i = j + 1: Now fj is a partial isomorphism from A also to Bj since A ⊆ Bj

and thus by AP there is Bj ⊆ Bi |= T and an embedding g : A → Bi such that
g � dom(fj) = fj .

i is limit: Bi =
⋃
j<i Bj .

Clearly B = Bα is as wanted.

5.9 Definition. We say that A |= T is existentially closed if for all A ⊆ B |=
T , atomic or negated atomic formulas φi(vk, x) , i < n and x = (x1, ..., xm) , and
a ∈ Am , the following holds: if B |= ∃vk ∧i<n φi(vk, a) then A |= ∃vk ∧i<n φi(vk, a) .
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5.10 Lemma. If A |= T is existentially closed, then for all A ⊆ B |= T ,
quantifier free formula φ(vk, x) , x = (x1, ..., xm) , and a ∈ Am , the following holds:
if B |= ∃vkφ(vk, a) then A |= ∃vkφ(vk, a) .

Proof. Exercise. (Hint: By e.g. the course Logiikka I, every quantifier free
formula φ(x) is equivalent with a formula of the form ∨i<n ∧j<m φij(x), where each
φij is atomic or negated atomic formula.)

5.11 Theorem. Suppose κ ≥ |Lωω| and T has AP, JEP and is closed under
unions. Then there is a model A of T such that for all B |= T of power ≤ κ , there
is an embedding f : B → A and for all partial isomorphisms f : A → A of power
≤ k , there is an automorphism g of A such that g � dom(f) = f . Furthermore,
such a model is existentially closed.

Proof. By recursion on i ≤ κ+ we define models Ai of T as follows:

i = 0: We let Ai be as given by Lemma 5.7.

i = j + 1: By Lemma 5.8 we can find Aj ⊆ Ai |= T such that every partial
isomorphism from Aj to Aj extends to an embedding from Aj to Ai .

i is limit: Ai =
⋃
j<iAj .

We show that A = Aκ+ is as wanted. Clearly A has the first of the required
properties. For the second, let f : A → A be a partial isomorphism of power ≤ κ .
Then by Fact 2.8 (v), there is α < κ+ such that dom(f) ∪ rng(f) ⊆ Aα . By
recursion on α ≤ i < κ+ we define an increasing sequence of partial isomorphism
fi : Ai+1 → Ai+1 as follows:

i = α : fi = f .

i = j + 1: Since fj is a partial isomorphism from Ai → Ai , by the choice of
Ai+1 , there is a an embedding fi : Ai → Ai+1 .

i is limit: Let f∗
i =

⋃
α≤j<i fj . Then (f∗

i )−1 is a partial isomorphism from Ai

to Ai and thus there is an embedding g : Ai → Ai+1 such that g � rng(f∗
i ) = (f∗

i )−1 .
We let fi = g−1 .

Then g =
⋃
α≤i<κ+ fi is a partial isomorphism, dom(g) = A and rng(g) = A

i.e. g is an isomorphism and clearly it extends f .

To prove the furthermore part, let B , a = (a1, ..., am) and φi(vk, x), i < n , be
as in the definition of existentially closed. Choose b ∈ B such that B |= ∧i<nφi(b, a)
and by Lemma 4.8 choose C � B of power ≤ κ such that a ∈ Cm and b ∈ C . Then
C |= T and there is an embedding f : C → A . Now g = (f � {a1, ..., am})−1 is a
partial isomorphism from A to A and thus there is an automorphism h′ of A such
that h′ � dom(g) = g . Let h = h′ � rng(f). Then h ◦ f is an embedding of C to
A and for all 1 ≤ j ≤ m , (h ◦ f)(aj) = aj . Since φi , i < n , are atomic or negated
atomic, A |= φi((h ◦ f)(b), (h ◦ f)(a)). Thus A |= ∃vk ∧i<n φi(vk, a).

5.12 Definition. We say that T has the elimination of quantifiers if for all
formulas φ(x) , x = (x1, ..., xn) , there is a quantifier free formula ψ(x) such that
T |= ∀x1...∀xn(φ(x) ↔ ψ(x)) .
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5.13 Theorem. Suppose T has AP, JEP and is closed under unions. If T ∗ is
such a theory that its models are exactly the existentially closed models of T , then
T ∗ is complete and it has the elimination of quantifiers.

Proof. Let κ ≥ |Lωω| and A be as in Theorem 5.11. Since A is existentially
closed, A |= T ∗ . The completeness of T ∗ follows easily from the elimination of
quantifiers and the existence of A (exercise). To prove the elimination of quantifiers,
we prove by a simultaneous induction on φ(x), x = (x1, ..., xn) that

(i) if B ⊆ A , B |= T ∗ and a ∈ Bn , then B |= φ(a) iff A |= φ(a),
(ii) there is quantifier free ψ(x) such that T ∗ |= ∀x1...∀xn(φ(x) ↔ ψ(x)).
The steps φ atomic, φ = ¬θ and φ = θ ∧ θ′ are trivial. So we assume that

φ(x) = ∃viθ(vi, x).
Proof of (i): If B |= φ(a) then for some b ∈ B , B |= θ(b, a) and so by (i) of the

induction assumption, A |= θ(b, a), so A |= φ(a). Then suppose A |= φ(a). By (ii)
in the induction assumption, let ψ be quantifier free such that

(*) T ∗ |= ∀vi∀x1...∀xn(θ(vi, x) ↔ ψ(vi, x)).
Now A |= ∃viψ(vi, a) and since B is existentially closed B |= ∃viψ(vi, a). By (*),
B |= φ(a).

Proof of (ii): For a ∈ An and x = (x1, ..., xn), let

txat(a/∅;A) = {θ(x)| θ atomic or negated atomic, A |= θ(a)}.

We write (B, b) |= txat(a/∅;A) if B |= θ(b) for all θ(x) ∈ txat(a/∅;A).

1 Claim. Suppose A |= φ(a) , B |= T ∗ and (B, b) |= txat(a/∅;A) . Then
B |= φ(b) .

Proof of Claim 1: Suppose not. Let B and b witness this. By Lemma 4.8 we
may assume that |B| ≤ κ . By the choice of A , there is an embedding of B to A
and so we may assume that B ⊆ A . Then (A, b) |= txat(a/∅;A) and thus bi 7→ ai ,
1 ≤ i ≤ n , is a partial isomorphism and thus there is an automorphism f of A such
that f(bi) = ai for all 1 ≤ i ≤ n . But then A |= ¬φ(a), since A |= ¬φ(b) by (i) and
the choice of B and b , a contradiction. Claim 1.

2 Claim. Suppose A |= φ(a) . Then there is finite q ⊆ txat(a/∅;A) such that
T ∗ |= ∀x1...∀xn((∧q) → φ) .

Proof of Claim 2: By Claim 1, T ∗ ∪ txat(a/∅;A) |= φ(x) and thus the claim
follows from compactness. Claim 2.

Let pi , i < α , enumerate the set {txat(a/∅;A)| A |= φ(a)} . Let qi ⊆ pi be as in
Claim 2 and ψi(x) = ∧qi .

Claim 3. If B |= T ∗ and B |= φ(b) , then for some i < α , B |= ψi(b) .

Proof of Claim 3: Suppose not. Then as in the proof of Claim 1, we can find
B and b witnessing this so that B ⊆ A . Then A |= ¬ψi(b) for all i < α and
by (i), A |= φ(b). This contradicts the fact that pi , i < α , enumerates the set
{txat(a/∅;A)| A |= φ(a)} . Claim 3.
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So T ∗ ∪ {¬ψi(x)| i < α} |= ¬φ(x). By compactness, there is finite X ⊆ α
such that T ∗ |= ∀x1...∀xn(∧i∈X¬ψi(x) → ¬φ(x)) i.e. T ∗ |= ∀x1...∀xn(φ(x) →
∨i∈Xψi(x)). Since for all i ∈ X , T ∗ |= ∀x1...∀xn(ψi(x) → φ(x)),

T ∗ |= ∀x1...∀xn(φ(x) ↔ ∨i∈Xψi(x)).

5.14 Definition. We say that T is model complete if for all A,B |= T , A ⊆ B
implies A � B .

5.15 Lemma. If T has the elimination of quantifiers, then T is model com-
plete.

Proof. Exercise.

5.16 Exercise. In section 1 we said that the atomic formula > is needed in
the proof of Theorem 5.13. Where was it needed in the proof?

6. Example: Algebraically closed fields

We return to the example from section 3. So in this section L = {+,×,−, 0, 1} ,
and we study the theory Tf0 . Instead of 0 we could work also with any positive
characteristic p , only changes needed would be that we should replace Q and Z by
the p element field Fp .

6.1 Lemma. For all polynomials P ∈ Z[x1, ..., xn] there is a term t(x1, ..., xn)
such that for all A |= Tf0 and a ∈ An , P (a) = tA(a) (and vice versa).

Proof. Exercise.
So for every atomic formula φ(x), x = (x1, ..., xn), there is a polynomial P ∈

Z[x1, ..., xn] such that for all A |= Tf0 and a ∈ An , A |= φ(a) iff P (a) = 0.
Tacf0 is the theory we get from Tf0 by adding the sentences
∀v0...∀vn(¬vn = 0 → ∃vn+1Σi=ni=0 vi × vin+1 = 0),

for all n ∈ IN − {0} . Then A |= Tacl0 if A is an algebraically closed closed field of
characteristic 0.

We need few facts from algebra.

6.2 Fact.
(i) Every field A can be extended to an algebraically closed field B . Furthermore,

this can be done so that there is a ∈ B such that for all non-zero P ∈ A[X] , P (a) 6= 0
(i.e. a is not algebraic over A).

(ii) If A,B |= Tf0 , C ⊆ A , D ⊆ B (i.e. C and D are subrings) and f : C → D
is an isomorphism, then there is an isomorphism g between the fields generated by
C and D such that g � C = f .

(iii) If A,B, C,D |= Tf0 , C ⊆ A , D ⊆ B , a ∈ A and b ∈ B are algebraic over
C and D , respectively, P ∈ C[X] is the minimal polynomial of a , f : C → D is an
isomorphism and f(P )(b) = 0 , then there is an isomorphism g : C(a) → D(b) such
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that g � C = f and g(a) = b . (Here C(a) is the field generated by C ∪ {a} and
f(Σi=ni=0 ciX

i) = Σi=ni=0 f(ci)X
i .)

(iv) If A,B, C,D |= Tf0 , C ⊆ A , D ⊆ B , a ∈ A and b ∈ B are not algebraic
over C and D respectively and f : C → D is an isomorphism, then there is an
isomorphism g : C(a) → D(b) such that g � C = f and g(a) = b .

Proof. See the course Algebra II.

6.3 Lemma. Tf0 has AP, JEP and is closed under unions.

Proof. Tf0 is closed under unions by Lemma 5.4 and since for all A |= Tf0 ,
there is an embedding f : (Z,+,×,−, 0, 1) → A , JEP follows from AP and Lemma
5.6. So we are left to prove AP.

So suppose A,B |= Tf0 and f : A → B is a partial isomorphism. By recursion
on ordinals i we define subfields Ai of A , algebraically closed fields Ci ⊇ B and
embeddings fi : Ai → Ci as follows:

i = 0: We start by letting C = {tA(a)| t(x1, ..., xn) a term, a ∈ dom(f)n} and
D = {tB(b)| t(x1, ..., xn) a term, b ∈ rng(f)n} . When equipped with the induced
structure, C and D are subrings of A and B , respectively, and since f is a partial
isomorphism g(tA(a)) = tB(f(a)) is an isomorphism from C to D such that g �

dom(f) = f (exercise). Let A0 be the subfield generated by C and D be the
subfield generated by D . By Fact 6.2 (ii), there is an isomorphism f0 : A0 → D
such that f0 � C = g . By Fact 6.2 (i), we let C0 be any algebraically closed field
containing B .

i = j + 1: If Aj = A , then fj is the require embedding of A to Cj ⊇ B .
So suppose a ∈ A−Aj . There are two cases:
(a) a is algebraic over Aj : We let Ci = Cj , Ai = Aj(a) and P ∈ Aj[X] be the

minimal polynomial of a over Aj . Since Ci is algebraically closed, there is b ∈ Ci
such that f(P )(b) = 0. By Fact 6.2 (iii) there is an isomorphism fi : Ai → rng(fj)(b)
such that fi � Aj = fj .

(b) a is not algebraic: Let Ai = Aj(a) and choose an algebraically closed
Ci ⊇ Cj such that some b ∈ Ci is not algebraic over Cj . Then b is not algebraic over
rng(fj) and thus by Fact 6.2 (iv) there is an isomorphism fi : Ai → rng(fj)(b) such
that fi � Aj = fj .

i is limit: Let Ai =
⋃
j<iAj , fi =

⋃
j<i fj , Ci =

⋃
j<i Cj .

6.4 Theorem. Tacf0 is complete and has the elimination of quantifiers.

Proof. By Lemma 6.3 and Theorem 5.13, it is enough to show that for all
A |= Tf0 , A is existentially closed iff A |= Tacf0 . By Fact 6.2 (i), the claim from
left to right is clear. So we prove the other direction. So suppose A |= Tacf0 ,
A ⊆ B |= Tf0 , φi(vk, x), i < n , are atomic or negated atomic formulas, a ∈ Am and
B |= ∃vk ∧i<n φi(vk, a). Let b ∈ B be such that B |= ∧i<nφi(b, a). There are two
cases:

1. b is algebraic over A : Since A is algebraically closed, b ∈ A and thus
A |= ∃vk ∧i<n φi(vk, a).
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2. b is not algebraic over A : Then w.o.l.g. each φi(vk, a) is of the form
¬Pi(vk, a) = 0 (or 0 = 0), where Pi(vk, a) = Σi=li=0biv

i
k where each bi ∈ {a1, ..., am} .

Since each polynomial Pi(vk, a) has only finitely many roots and A is infinite, there
is c ∈ A such that Pi(c, a) 6= 0 for all i < n . Thus A |= ∃vk ∧i<n φi(vk, a).

6.5 Remark. So {φ| (C,+,×,−, 0, 1) |= φ} is recursive (i.e. computer
can be programmed to tell for all sentences φ , whether (C,+,×,−, 0, 1) |= φ or
not, see the course Matemaattinen logiikka). Similarly one (Tarski) can show that
{φ| (R,+,×,−, 0, 1) |= φ} is recursive. The following is a famous open question:
Is {φ| (R,+,×,−, exp, 0, 1) |= φ} recursive? Schanuel’s conjecture implies that the
answer is yes. By Exercise 1.12, {φ| (C,+,×,−, exp, 0, 1) |= φ} knows which Dio-
phantine equations P (X1, ..., Xn) = 0 , P (X1, ..., Xn) ∈ Z[X1, ..., Xn] , have an inte-
ger root and thus by the negative answer to Hilbert’s 10th problem (due to M.Davis,
Y.Matiyasevich, H.Putnam and J.Robinson) {φ| (C,+,×,−, exp, 0, 1) |= φ} is not
recursive.

6.6 Exercise. Let L = {<} , < is a 2 -ary predicate symbols, and let Tlo ( lo
for linear ordering) consist of the following sentences:

∀v0∀v1∀v2((v0 < v1 ∧ v1 < v2) → v0 < v2)

∀v0∀v1(v0 < v1 → ¬v1 < v0)

∀v0∀v1(v0 < v1 ∨ v0 = v1 ∨ v1 < v0) .

Show that Tlo has AP, JEP and is closed under unions and find a theory T so that
the models of T are exactly the existentially closed models of Tlo .

7. Ehrenfeucht-Fräıssé games

7.1 Definition.

(i) We say that φ is a relational atomic formula if it is of the form Ri(x1, ..., xn)
or xp = fj(x1, ..., xn) or fj(x1, ..., xn) = xp or x1 = ck or ck = x1 or x1 = x2 .

(ii) Relational formulas are defined as follows: Relational atomic formulas are
relational formulas and if φ and ψ are relational then so are ¬φ , φ ∧ ψ and ∃xφ .

Notice that if L is finite, then for all n ∈ IN − {0} , the number of relational
atomic formulas of the form φ(v1, ..., vn) is finite (the same is true for atomic formulas
only if J∗ = ∅).

7.2 Definition.

(i) For terms t , the relationality rank rr(t) is defined as follows: If t = vi ,
then rr(t) = 0 , if t = ck , then rr(t) = 1 and if t = fj(t1, ..., tn) , then rr(t) =
max{rr(t1), ..., rr(tn)} + 1 .

(ii) For atomic formulas φ , the relationality rank rr(φ) is defined as follows:
If φ = Ri(t1, ..., tn) , then rr(φ) = max{rr(t1), ..., rr(tn)} and if φ = t = u , then
rr(φ) = rr(t) + rr(u) − 1 .

Notice that atomic φ is relational iff rr(φ) ≤ 0.
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7.3 Lemma. For all atomic formulas φ(x) , x = (x1, ..., xn) , there is a rela-
tional formula ψ(x) such that for all A and a ∈ An , A |= φ(a) ↔ ψ(a) (i.e. φ(x)
and ψ(x) are equivalent).

Proof. Easy induction on rr(φ): If rr(φ) ≤ 0, the claim is clear and for
rr(φ) = p + 1 > 0 e.g. if φ = Ri(t1(x), ..., tm(x)), we observe that φ is equivalent
with ∃y1...∃ym(Ri(y1, ..., ym) ∧

∧
1≤j≤m yj = tj) and that the relationality ranks of

formulas yj = tj are ≤ p and thus the claim follows from the induction assumption.

7.4 Lemma. For all formulas φ(x) , there is a relational formula ψ(x) such
that it is equivalent with φ(x) .

Proof. By Lemma 7.3, trivial induction on φ . .

7.5 Definition. f : A → B is a relational partial isomorphism from A to B
if A ⊆ A and for all relational atomic formulas φ(x1, ..., xn) and a ∈ An , A |= φ(a)
iff B |= φ(f(a)) .

7.6 Definition. Suppose a ∈ An and b ∈ Bn . In order to simplify the
notation, we assume that A ∩ B = ∅ .

(i) Ehrenfeucht-Fräıssé game EFk((A, a), (B, b)) of length k ≤ ω is a game
played by two players, I and II . At each round m < k , first I chooses cm ∈ A∪B
and then II chooses a relational partial isomorphism fm : A → B such that cm ∈
dom(fm) ∪ rng(fm) , for all 1 ≤ i ≤ n , ai ∈ dom(fm) , fm(ai) = bi and if m > 0 ,
then fm � dom(fm−1) = fm−1 . For k = 0 , II wins if ai 7→ bi is a relational partial
isomorphism and for k > 0 , the first who breaks the rules looses and if neither break
the rules, II wins.

(ii) A strategy for a player II in EFk((A, a), (B, b)) is a sequence (gi)i<k such
that for all i < k , gi is an i+ 1 -ary function from A∪B to partial maps from A to
B . The strategy is winning if II always wins the game by choosing fi(c0, .., ci) on
each round i .

(iii) We say that II wins EFk((A, a), (B, b)) (II ↑ EFk((A, a), (B, b))) if II has
a winning strategy in the game.

If a = b = ∅ , we write EFk(A,B) for EFk((A, a), (B, b)).
Notice that in (i) above we could require that |dom(fm)| = n+m+ 1 and this

would not change the winner of the game.

7.7 Definition. The quantifier rank qr(φ) of a formula φ is defined as follows:
If φ is atomic, qr(φ) = 0 , qr(¬ψ) = qr(ψ) , qr(ψ ∧ θ) = max{qr(ψ), qr(θ)} and
qr(∃xψ) = qr(ψ) + 1 .

7.8 Theorem. Suppose L is finite, a ∈ An and b ∈ Bn , Then for all k ∈ IN
the following are equivalent:

(i) II ↑ EFk((A, a), (B, b)) .
(ii) For all relational formulas φ(x) , x = (x1, ..., xn) , of quantifier rank ≤ k ,

A |= φ(a) iff B |= φ(b) .
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Proof. (i)⇒(ii): We prove this by induction on k . The case k = 0 is immediate
by the definitions. So we assume that k = p + 1 > 0. We prove (ii) by induction
on φ . The cases when φ is atomic or ¬ψ or ψ ∧ θ are trivial. So we suppose
φ(x) = ∃yψ(y, x). Clearly we may assume that qr(ψ) ≤ p . By symmetry it is
enough to show that if A |= φ(a) then B |= φ(b). Since A |= φ(a), there is c ∈ A
such that A |= ψ(c, a). We let this c be the first choice of I in EFk((A, a), (B, b)).
Let f0 be the answer given by the winning strategy of II and let d = f0(c). Then
II ↑ EFp((A, c, a), (B, d, b)) and so by the induction assumption A |= ψ(c, a) iff
B |= ψ(d, b). So B |= ψ(d, b) thus B |= φ(b).

(ii)⇒(i): Clearly it is enough to prove the following claim:

1 Claim. Suppose k ∈ IN . For all n ∈ IN there is a finite set F kn of relational
formulas φ(x) , x = (v1, ..., vn) , (so for n = 0 the formulas are sentences) of quantifier
rank ≤ k such that

(a) for all A and a ∈ An there is φ(x) ∈ F kn such that A |= φ(a)
(b) if A |= φ(a) and φ ∈ F kn , then the following holds: For all B and b ∈ Bn

(*) II ↑ EFk((A, a), (B, b)) iff B |= φ(b) .

Proof. By induction on k .
k = 0: Let ψi(x), x = (v1, ..., vn) and i < m , list all relational atomic formulas

in which only variables v0, ..., vn appear. For Y ⊆ m , let φY (x) =
∧
i∈Y ψi(x) ∧∧

i∈m−Y ¬ψi(x). Let F kn = {φY | Y ⊆ m} . Clearly F kn is as required.
k = p+1: Let ψi(x, vn+1), x = (v1, ..., vn) and i < m , enumerate the set F pn+1 .

For all non-empty Y ⊆ m , let

φY (x) =
∧

i∈Y

∃vn+1ψi(x, vn+1) ∧ ∀vn+1

∨

i∈Y

ψi(x, vn+1).

We show that F kn = {φY (x)| Y ⊆ m, Y 6= ∅} is as required.
By the induction assumption, each φY is relational and of quantifier rank ≤

p + 1 = k . So let A and a ∈ An be given. Let Y be the set of all i < m such
that A |= ∃vn+1ψi(a, vn+1). By the induction assumption, Y 6= ∅ and so φY ∈ F kn .
Furthermore, A |= φY (a). Thus (a) holds.

For (b), suppose A |= φY (a), Y ⊆ m non-empty. By (i)⇒(ii), if II ↑
EFk((A, a), (B, b)), then B |= φY (b).

For the other direction in (*), suppose B |= φY (b) and we describe a winning
strategy for II . Let c0 ∈ A ∪ B be the first move of I . We suppose c0 ∈ B , the
other case is similar. Since B |= φY (b), there is i ∈ Y such that B |= ψi(b, c0). Since
A |= ∃vn+1ψi(a, vn+1), there is d ∈ A such that A |= ψi(a, d). The first move of II
is f0 , where dom(f0) = {a1, ..., an, d} , f0(ai) = bi for 1 ≤ i ≤ n and f0(d) = c0 .
By the induction assumption II ↑ EFp((A, a, d), (B, b, c0)) and thus the rest of the
moves, II can play according to this winning strategy and win the game. Claim
1.
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7.9 Definition. We say that A and B are elementarily equivalent (A ≡ B )
if for all sentences φ , A |= φ iff B |= φ .

7.10 Corollary. The following are equivalent:

(i) A ≡ B .

(ii) For all finite L∗ ⊆ L and k ∈ IN , II ↑ EFk(A � L∗,B � L∗) .

Proof. Immediate by Theorem 7.8, Lemma 7.4 and the fact that every L -
formula is L∗ -formula for some finite L∗ ⊆ L .

7.11 Remark. There are a vocabulary L and L -structures A and B such
that A ≡ B but II does not win EF1(A,B) .

Proof. Exercise.

8. Types and saturated models

8.1 Lemma. Suppose T is a complete theory and A,B |= T .

(i) If f : A → B is an partial elementary map, then there is C |= T and an
elementary embedding g : A → C such that B � C and g � dom(f) = f .

(ii) There are B � C and an elementary embedding f : A → C .

Proof. Since T is complete, the empty function from A to B is elementary
and thus (ii) follows from (i) (compare Lemma 5.6). We prove (i). Without loss of
generality, we may assume that A∩ B = ∅ (this simplifies the notation).

As e.g. in the proof of Lemma 4.5, it suffices to show that

T ∗ = Th(A,A) ∪ Th(B,B) ∪ {d = e| d ∈ dom(f), e = f(a)}

is consistent (exercise). Let φ(c, b) ∈ Th(B,B), where φ = φ(x, y), c ∈ (B−rng(f))m

and b ∈ rng(f)n . Let a ∈ dom(f)n be such that f(ai) = bi for 1 ≤ i ≤ n . Since
Th(B,B) is closed under conjunctions, by compactness it is enough to prove that

T ′ = Th(A,A) ∪ {φ(c, b)} ∪ {d = e| d ∈ dom(f), e = f(a)}

is consistent. Now B |= ∃x1...∃xmφ(x, b) and since f is elementary,

A |= ∃x1...∃xmφ(x, a).

Let c′ = (c′1, ..., c
′
m) ∈ Am be such that A |= φ(c′, a). Let C be a model we get from

(A,A) by adding the interpretations for e , e ∈ B , as follows: If e = f(d) for some
d ∈ dom(f), then eC = d , if e = ci for some 1 ≤ i ≤ m , then eC = c′i and otherwise
we choose the interpretations freely. Clearly C |= T ′ .
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8.2 Definition. Suppose A ⊆ A and n > 0 .
(i) Lωω(A, n) is the set of all φ(x, a) , where φ(x, y) is a formula, x = (v1, ..., vn)

and a is a sequence of elements of A .
(ii) An n -type over A is a non-empty subset of Lωω(A, n) .
(iii) An n -type p over A is complete if for all φ ∈ Lωω(A, n) , φ ∈ p or ¬φ ∈ p .
(iv) b ∈ An realizes an n -type p over A if A |= φ(b, a) for all φ(x, a) ∈ p .

t(b/A) = t(b/A;A) is the set of all φ(x, a) ∈ Lωω(A, n) such that B |= φ(b, a) i.e.
the unique complete n -type over A realized by b .

(v) An n -type p over A is consistent (in A) if there is B and b ∈ Bn such that
A � B and b realizes p .

(vi) Sn(A) = Sn(A;A) is the set of all complete consistent n -types over A .

8.3 Lemma. Suppose A ⊆ A and p is an n -type over A . Then the following
are equivalent.

(i) p is consistent.
(ii) For all φi(x, a

i) ∈ p , i < m ∈ IN , A |= ∃v1...∃vn
∧
i<m φi(x, a

i) .
(iii) T = Th((A, A)) ∪ {φ(c, a)| φ(x, a) ∈ p} is consistent, where c = (c1, ..., cn)

are new constant symbols.

Proof. (i)⇒(ii): Let B and b witness the consistency. Then B |=
∧
i<m φi(b, a

i)
and thus B |= ∃v1...∃vn

∧
i<m φi(x, a

i). Since A � B , A |= ∃v1...∃vn
∧
i<m φi(x, a

i).
(ii)⇒(iii): Let φi(c, a

i) ∈ {φ(c, a)| φ(x, a) ∈ p} , i < m ∈ IN. By compactness,
it suffices to show that T ′ = Th((A, A)) ∪ {φi(c, a

i)| i < m} is consistent. By (ii),
there is b ∈ An such that (A,A) |= φi(b, a

i) for all i < m . Thus by interpreting ci
to bi , we get a model for T ′ .

(iii)⇒(i): Let B∗ be a model of T and B = B∗ � L . Clearly we may choose
B∗ so that for all a ∈ A , aB

∗

= a . Then the identity function id : A → B is an
elementary partial map from A to B and thus by Lemma 8.1 (i), we may assume in
addition that A � B . Letting bi = cB

∗

i for 1 ≤ i ≤ n , b = (b1, ..., bn) realizes p in
B .

8.4 Remark.
(i) Suppose A ⊆ A . Letting the sets {p ∈ Sn(A)| φ(x, a) ∈ p} for φ(x, a) ∈

Lωω(A) , be a basis for a topology on Sn(A) , we get a Hausdorff topology which is
by Lemma 8.3 also compact (exercise). This space is called a Stone space.

(ii) If T is complete and A,B |= T , then Sn(∅;A) = Sn(∅;B) (by Lemma 8.3
(iii)) and thus when T is given, we can talk about Sn(∅) without need to specify the
model.

8.5 Definition.
(i) We say that A is κ -saturated if if for all n ∈ IN − {0} , A ⊆ A of power

< κ and p ∈ Sn(A) , some a ∈ An realizes p . We say that A is saturated if it is
|A| -saturated.

(ii) We say that A is strongly κ -homogeneous if for all partial elementary maps
f : A → A with dom(f) of power < κ , there is an automorphism g of A such that
g � dom(f) = f .
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(iii) We say that A is κ -universal if for all B |= Th(A) of power < κ , there is
an elementary embedding f : B → A .

8.6 Lemma. Suppose κ ≥ ω . If for all A ⊆ A of power < κ and p ∈ S1(A) ,
some a ∈ A realizes p , then A is κ -saturated.

Proof. Exercise.

8.7 Theorem. Suppose T is a complete theory and κ is a cardinal. Then
there is A |= T which is κ -saturated, κ -universal and strongly κ -homogeneous.

Proof. By Lemma 8.1 and Corollary 4.7, the proof is the same as that of Theo-
rem 5.11, verbatim, except that one needs to replace ⊆ by � , partial isomorphisms
by partial elementary maps and quantifier free formulas by complete types (exercise).

8.8 Remark. It is not an accident that the proofs of 8.7 and 5.11 are the
same, see the work on abstract elementary classes.

8.9 Lemma. If T is a complete theory and A,B |= T are infinite saturated
models of the same size, then A and B are isomorphic.

Proof. Let us enumerate A = {ai| i < κ} and B = {bi| i < κ} . By induction
on i ≤ κ , we construct partial elementary maps fi, gi : A → B so that

(i) for i < j ≤ κ , fi ⊆ gj ⊆ fj ,

(ii) for all i < κ , ai ∈ dom(gi+1) and bi ∈ rng(fi+1),

(iii) for all i < κ , |dom(fi)|, |dom(gi)| < |i|+ + ω .

For i = 0, we let fi = gi = ∅ (these are elementary because T is complete) and for
limit i we let gi = fi =

⋃
j<i fj (=

⋃
j<i gj by (i)).

Suppose i = j + 1. Let A = dom(fj) and p = t(aj/A;A). Let fj(p) =
{φ(x, fj(a

′
1), ..., fj(a

′
n))| φ(x, a′1, ..., a

′
n) ∈ p} . Since fj is elementary, by Lemma 8.3

(ii), fj(p) is consistent. Since B is saturated and fj satisfies (iii), fj(p) is realized
in B by some b . Let gi be such that dom(gi) = dom(fj) ∪ {aj} , gi � A = fj and
gi(aj) = b . Clearly (i)-(iii) are satisfied. fi can be found similarly, only start from
gi and look the inverses.

Then fκ is the isomorphism claimed to exist.

8.10 Example. Every uncountable model of Tacf0 is saturated and thus Tacf0
is κ -categorical for all κ > ω .

Proof. Exercise.

8.11 Fact. Tdlo = Th((Q, <)) has a saturated model of power κ iff κ<κ =
κ ≥ ω , where κ<κ is the cardinality of the set {f : α → κ| α < κ} . (So Tdlo has a
saturated model of power ℵ1 iff the continuum hypothesis holds and it has never a
saturated model of power ℵω . In fact, it is consistent that upto isomorphism, (Q <)
is the only saturated model of Tdlo .)
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8.12 Lemma.
(i) If A is κ -saturated, then it is κ+ -universal.
(ii) If A is saturated then it is strongly |A| -homogeneous.

Proof. Exercise.

8.13 Exercise. Show that if A |= Tdlo is saturated and κ = |A| , then
κ<κ = κ . (Hint: See Exercise 6.6.)

9. Omitting types and ω -categoricity

9.1 Definition.
(i) We say that a theory T locally omits an n -type p over ∅ , if the following

holds: For every formula φ(x) , x = (v1, ..., vn) , if T 6|= ∀v1...∀vn¬φ(x) , then there is
θ(x) ∈ p such that T 6|= ∀v1...∀vn(φ(x) → θ(x)) .

(ii) We say that A omits an n -type p over ∅ if no a ∈ An realize p .

In the following theorem, it is crucial that the vocabulary is countable (i.e. of
size ω or finite) and that we claim only that A is countable, see Remark 9.3. In fact
for uncountable vocabularies there are no known methods, anywhere as powerful as
9.2, to omit types.

9.2 Omitting types theorem. Suppose L is countable, T is a theory and
D is a countable collection of types over ∅ . If T locally omits every p ∈ D then T
has a countable model A which omits every p ∈ D .

Proof. This proof is a modification of the usual proof of the completeness the-
orem, see the course Matemaattinen logiikka. For simplicity, we assume that D is
a singleton and that the only type p in D is a 1-type (exercise: what changes are
needed to prove the general case?). Let ci , i < ω , be new constants and denote
L∗ = L ∪ {ci| i < ω} . Let φi , i < ω , enumerate all L∗ -sentences so that if cj ap-
pears in φi then j < i . By recursion on k < ω , we construct an increasing sequence
of consistent L∗ -theories Tk so that

(i) Tk − T is finite and if ci appears in some θ ∈ Tk , then i ≤ k ,
(ii) φk ∈ Tk+1 or ¬φk ∈ Tk+1 ,
(iii) if φk = ∃xθ(x) ∈ Tk+1 , then θ(ck+1) ∈ Tk+1 ,
(iv) there is θ(v1) ∈ p such that ¬θ(ck) ∈ Tk+1 .

We let T0 = T .
For Tk+1 , first we choose L -formula φ(v1, x0, ..., xk−1), so that

|= φ(ck, c0, ..., ck−1) ↔
∧

{θ| θ ∈ Tk − T}

(if k = 0, we let φ = v1 = v1 ). Now T 6|= φ(ck, c0, ..., ck−1) → θ(ck) for some
θ(v1) ∈ p because otherwise (exercise or see the course Matemaattinen logiikka)

T |= ∀v1(∃x0...∃xk−1φ(v1, x0, ..., xk−1) → θ(v1))
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for all θ(v1) ∈ p contradicting the assumption that T locally omits p . So there is
θ(v1) ∈ p such that T ∗

k+1 = Tk ∪ {¬θ(ck)} is consistent. This takes care of (iv).

Clearly either T ∗
k+1 ∪ {φk} or T ∗

k+1 ∪ {¬φk} is consistent and let T ∗∗
k+1 be the

one of these that is consistent. This takes care of (ii).

Unless φk = ∃xψ(x) for some ψ and φk ∈ T ∗∗
k , we let Tk+1 = T ∗∗

k+1 . Otherwise,
since ck+1 does not appear in T ∗∗

k+1 , Tk+1 = T ∗∗
k+1∪{ψ(ck+1)} is consistent (exercise

or see the course Matemaattinen logiikka). This takes care of (iii). Clearly (i) holds.

Then T ∗ = ∪k<ωTk is consistent and it has a model, say B∗ . Let B = B∗ � L
and A = {cBi | i < ω} .

1 Claim. For all constants c ∈ L , cB ∈ A and for all n−ary function symbols
f ∈ L and a ∈ An , fB(a) ∈ A .

Proof. Exercise. Claim 1.

By Claim 1 we can let A be the L -model such that dom(A) = A , for all R ∈ L ,
RA = RB ∩ A#R , for all f ∈ L , fA = fB � A#f and for all c ∈ L , cA = cB . Then
A is a substructure of B and by (iii) and Tarski-Vaught, A � B (if B |= ∃xψ(x, cB),
c = (ci1 , ..., cin) and cA = (cBi1 , ..., c

B
in

), then ∃xψ(x, c) ∈ T ∗ and so ψ(ck, c) ∈ T ∗ for

some k i.e. B |= ψ(cBk , c
B)). So A |= T and by (iv), A omits p .

9.3 Remark. Let us look at the theory Tf0 . Let

p = {¬(Σi=ni=0aiv
i
1 = 0)| n > 0, ai ∈ Z, an 6= 0}.

Then every model of Tf0 which omits p is countable. Using this, one can find L′ , T ′

and a type p′ such that T ′ locally omits p′ but no model of T ′ omit p′ (exercise).

9.4 Definition. Assume T is complete.

(i) We say that p ∈ Sn(∅) is isolated if T does not locally omit p i.e. there
is φ(v1, ..., vn) ∈ p such that for all ψ(v1, ..., vn) ∈ p , T |= ∀v1...∀vn(φ(v1, ..., vn) →
ψ(v1, ..., vn)) . When this happens, we say that φ isolates p .

(ii) A |= T is atomic if for all n ∈ IN and a ∈ An , t(a/∅) is isolated.

(iii) We say that φ(v1, ..., vn) is complete if it isolates some p ∈ Sn(∅) .

(iv) We say that T is atomic if for all φ(v1, ..., vn) either T |= ∀v1...∀vn¬φ or
there is complete ψ(v1, ..., vn) such that T |= ∀v1...∀vn(ψ → φ) .

9.5 Exercise. Let T be a complete theory and suppose that for all n ∈
IN − {0} , Sn(∅) is countable. Show that T has an atomic model. Conclude that
Tacf0 has an atomic model.

9.6 Lemma. Suppose T is a complete theory. Then the following are equiv-
alent.

(i) T is atomic.

(ii) T has an atomic model.
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Proof. (ii)⇒(i): Exercise.
(i)⇒(i): For all n ∈ IN − {0} , let

pn = {¬φ(v1, ..., vn)| φ is complete}.

Since T is atomic, T locally omits every pn . Thus by Theorem 9.2, T has a model
A which omits every pn . Clearly A is atomic.

9.7 Exercise. Find a theory that does not have an atomic model.

9.8 Lemma. Assume T is complete (with infinite models) and A and B are
countable atomic models of T . Then A and B are isomorphic.

Proof. This proof is essentially the same as that of Lemma 8.9: Let {ai| i < ω}
and {bi| i < ω} be enumerations of A and B , respectively. Then we construct
an increasing sequences of finite partial elementary maps fi, gi : A → B , i < ω ,
as in the proof of Lemma 8.9. We let f0 = g0 = ∅ and gi+1 is found as fol-
lows: Let {a′1, ..., a

′
n} = dom(fi). Then t((a′1, ..., a

′
n, ai)/∅) is isolated, say by

φ(v1, ..., vn+1). Since fi is elementary, B |= ∃vn+1φ(fi(a
′
1), ..., fi(a

′
n), vn+1). So there

is b ∈ B such that B |= φ(fi(a
′
1), ..., fi(a

′
n), b). Since φ isolates t((a′1, ..., a

′
n, ai)/∅),

t((fi(a
′
1), ..., fi(a

′
n), b)/∅) = t((a′1, ..., a

′
n, ai)/∅). This means that gi+1 is elementary

when dom(gi+1) = dom(fi) ∪ {ai} , gi+1 � dom(fi) = fi and gi+1(ai) = b . fi+1 is
found similarly. ∪i<ωfi is the required isomorphism.

9.9 Lemma. Assume T is complete (with infinite models), B |= T and A is
a countable atomic model of T . Then there is an elementary embedding f : A → B .

Proof. As the previous lemma (exercise).

9.10 Theorem (Ryll-Nardzewski). Assume L is countable and T is com-
plete and has infinite models. Then the following are equivalent:

(i) T is ω -categorical,
(ii) for all n ∈ IN − {0} , Sn(∅) is finite.

Proof. (ii)⇒(i): If Sn(∅) is finite, then every p ∈ Sn(∅) is isolated (if Sn(∅) =
{p0, ..., pn} , p = p0 , then

∧
1≤i≤n φi isolates p when the formulas φi are chosen so

that φi ∈ p− pi ). Thus every model of T is atomic and so (i) follows from Lemma
9.8.

(i)⇒(ii): Suppose Sn(∅) is infinite. We show that T is not ω -categorical.

1 Claim. There is non-isolated r ∈ Sn(∅) .

Proof. Suppose not. For every p ∈ Sn(∅), let φp ∈ p be a formula that isolates
p . Then q = {¬φp| p ∈ Sn(∅)} can be realized in a model of T by compactness since
for all p ∈ Sn(∅) every realization of p realizes q−{φp} . Let B |= T and b ∈ Bn be
such that b realizes q . Then r = t(b/∅) is a complete consistent type but r 6∈ Sn(∅),
a contradiction. Claim 1.
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Let r be as in Claim 1. By omitting types theorem, T has a countable model
A that omits r . Since T is complete and has infinite models, every model of T is
infinite and so A has power ω .

On the other hand, since r ∈ S(∅), there is a model B of T that realizes r .
As above B is infinite and so by Lemma 4.8 can be chosen to have cardinality ω .
Clearly A and B are not isomorphic.

9.11 Example. Tacf0 is not ω -categorical.

Proof. Exercise.

10. Indiscernible sequences

In the next section indiscernible sequences will play an important role. In this
section we make some general observations about them.

10.1 Definition. Suppose (I, <) is a linear ordering, for all i ∈ I , ai ∈ An

and A ⊆ A . We say that (ai)i∈I is m∗ -indiscernible over A of for all m ≤ m∗ ,
φ(x1, ..., xm, a) , xk = (xk1 , ..., x

k
n) and a ∈ An

∗

, the following holds: If i1 < i2 <
... < im and j1 < j2 < ... < jm are from I , then A |= φ(ai1 , ..., aim, a) iff A |=
φ(aj1 , ..., ajm, a) . (ai)i∈I is indiscernible over A if it is m∗ -indiscernible over A for
all m∗ ∈ IN .

If for all i, j ∈ I , ai = aj , (ai)i∈I is called trivial (indiscernible sequence).
When we talk about indiscernible sequences we mean non-trivial ones.

10.2 Definition. Let κ, λ and ξ be cardinals and X ⊆ κ .

(i) By [X]n we mean the set {(α1, ..., αn) ∈ Xn| α1 < α2 < ... < αn} .

(ii) We write κ→ (λ)nξ if the following holds: For all functions f : [κ]n → ξ there
is X ⊆ κ of power λ such that f � [X]n is constant (such X is called homogeneous).

10.3 Ramsay’s theorem. ω → (ω)nk for all n, k ∈ IN − {0} .

Proof. By induction on n :

n = 1: This is just the pigeon hole principle.
n = m + 1: By the induction assumption we can find by recursion on i < ω ,

infinite sets Xi ⊆ ω , bi ∈ Xi , functions fi : [Xi − {bi}]m → k and ci+1 ∈ k as
follows:

i = 0: X0 = ω , b0 = 0 and f0(a1, ..., am) = f(b0, a1, ..., am).

i = j + 1: We let Xi ⊆ Xj and ci ∈ k be such that Xi is infinite and for all
(a1, ..., am) ∈ [Xi]

m , fj(a1, ..., am) = ci . We let bi be the least element of Xi and
fi(a1, ..., am) = f(bi, a1, ..., am).

By the case i = 1, we can find infinite I ⊆ ω and c ∈ k such that for all i ∈ I ,
ci+1 = c . Then X = {bi| i ∈ I} is as wanted (exercise).

The following theorem is just one example of what kind of indiscernible sequences
can be found by compactness.
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10.4 Theorem. Suppose (I, <) is a linear ordering, ai = (ai1, ..., a
i
n) ∈ An ,

i < ω , and d ∈ Am are such that for i 6= j , A |= φ(ai, aj, d) iff i < j , where
φ(x, y, z) is a formula. Then there are A � B and ei ∈ Bn such that (ei)i∈I is
indiscernible over A and for all i, j ∈ I , i 6= j , B |= φ(ei, ej , d) iff i < j .

Proof. Let cij , i ∈ I and 1 ≤ j ≤ n , be constants not in L(A). Denote

ci = (ci1, ..., c
i
n). Clearly it is enough to show that the following theory T is consistent:

T = Th(A,A)∪

{ψ(ci1 , ..., cik, b) ↔ ψ(cj1 , ..., cjk, b)| ψ(z1, ..., zk, z) L -formula, b ∈ Alg(z),

i1 < i2 < ... < ik, j1 < j2 < ... < jk}∪

{φ(ci, cj , d) ∧ ¬φ(cj , ci, d)| i, j ∈ I, i < j}

where lg(z) is the length of the sequence z . By compactness, it is enough to show
that

T ′ = Th(A,A)∪

{ψs(cis
1
, ..., cis

ks
, b) ↔ ψs(cjs

1
, ..., cjs

ks
, b)| s ≤ s∗}∪

{φ(ci0
l
, ci0

l′
, d) ∧ ¬φ(ci0

l′
, ci0

l
, d)| 1 ≤ l < l′ ≤ k0}

is consistent for arbitrary L -formulas ψs(z1, ..., zks
, z), s ≤ s∗ ∈ IN, and is1 < is2 <

... < isks
and js1 < js2 < ... < jsks

from I .

For each s ≤ s∗ define fs : [ω]ks → 2 so that fs(n1, ..., nks
) = 1 if A |=

ψs(an1
, ..., anks

, b) and otherwise fs(n1, ..., nks
) = 0. By Ramsey’s theorem there is

infinite X ⊆ ω such that it is homogeneous for every function fs , s ≤ s∗ .
Let π : {isl , j

s
l | s ≤ s∗. 1 ≤ l ≤ ks} → X be order preserving. Let A∗ be a model

we get from (A,A) by interpreting c
isl
p to a

π(isl )
p and c

js
l
p to a

π(js
l )

p , where 1 ≤ l ≤ ks
and 1 ≤ p ≤ n . Clearly A∗ |= T ′ .

10.5 Theorem. Suppose (I, <) ⊆ (J,<) are infinite linear orderings, A ⊆ A
and ai ∈ An , i ∈ I , are such that (ai)i∈I is indiscernible over A . Then there are
A � B and bi ∈ Bn such that (bi)i∈J is indiscernible over A and for all i ∈ I ,
bi = ai .

Proof. As the proof of the previous theorem (exercise, Ramsey’s theorem is not
needed).

10.6 Lemma. Suppose (I, <) ⊆ (J,<) are linear orderings such that I is
an end segment of J (i.e. if j > i ∈ I , then j ∈ I ). If (ai)i∈J is indiscernible
over A ⊆ A , ai = (ai1, ..., a

i
n) ∈ An , then (ai)i∈I is indiscernible over A ∪ {ajk| j ∈

J − I, 1 ≤ k ≤ n} .

Proof. Exercise.
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10.7 Example. Suppose A |= Tacf0 . For A ⊆ A , by acl(A) we mean the
algebraic closure of A (i.e. the set of all roots from A of all non-zero polynomials
P (X) over the field generated by A). Then (ai)i<ω , ai ∈ A , is indiscernible over ∅
(and non-trivial) iff for all i < ω , ai 6∈ acl({aj| j < i}) .

Proof. Exercise.

11. Ehrenfeucht-Mostowski models

11.1 Definition. Given a vocabulary L , a skolemization LS of L is the
vocabulary L ∪ {fφ(vi,x)| φ(vi, x) L -formula, x = (x1, ..., xn)} , where fφ(vi,x) are
new n -ary function symbols (0 -ary function symbols are constants). Skolem theory
TS is the set of all sentences

∀x1...∀xn(∃viφ(vi, x) → φ(fφ(vi,x)(x), x)),

where φ(vi, x) is an L -formula.

11.2 Lemma.
(i) For all L -structures A there is LS -structure AS such that AS |= TS and

AS � L = A .
(ii) If A and B are LS -structures and B ⊆ A |= T S , then B � L � A � L .

Proof. (i) is trivial and (ii) follows immediately from Tarski-Vaught.

11.3 Definition. Let A be an LS -structure and A ⊆ A . By SH(A) (Skolem
hull) we mean the set

{tA(a)| t(x) LS -term, x = (x1, ..., xn), a ∈ An}.

Then SH(A) is closed under all fA , f ∈ LS a function symbol, and contains all cA ,
c ∈ LS a constant symbol, and thus it can be equipped with the structure induced
from A . This substructure of A is also called SH(A) .

Notice that by Lemma 11.2 (ii), SH(A) � L � A � L .

11.5 Definition. Let κ be an infinite cardinal. For all ordinals α , a cardinal
iα(κ) is defined as follows: i0(κ) = κ , iα+1(κ) = 2iα(κ) and for limit α , iα(κ) =⋃
β<α iβ(κ) . Also we write iα = iα(ω) .

Notice that for all infinite cardinals κ , iκ+(κ+) = iκ+ .

11.6 Fact (Erdös-Rado). For all infinite cardinals κ and n ∈ IN ,

(in(κ))+ → (κ+)n+1
κ .

Proof. See e.g. [Je].
Only for notational simplicity, in the following theorem we look at elements

aαi ∈ Aα instead n -sequences aαi ∈ An
α for n ∈ IN.
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11.7 Theorem. Let κ = |Lωω| and λ = (2κ)+ . Suppose that for all α < λ ,
we have Aα and aαi ∈ Aα , i < (iα(λ))+ , such that aαi 6= aαj for i 6= j . For all

α < λ , let AS
α be as in Lemma 11.2 (i) for Aα . Then there is a collection Φ of

LS -formulas with the following properties:
(i) for every LS -formula φ(v1, ..., vn) , n ∈ IN , either φ ∈ Φ or ¬φ ∈ Φ ,
(ii) for all linear orderings (I, <) , there are LS -structure B and bi ∈ B , i ∈ I ,

such that
(a) for all φ(v1, ..., vn) and i1 < i2 < ... < in from I , B |= φ(bi1 , ..., bin) iff

φ(v1, ..., vn) ∈ Φ ,
(b) for all i1 < i2 < ... < in from I , there are α < λ , γ1 < ... < γn < (iα(λ))+

and an isomorphism π : SH({bi1 , ..., bin}) → SH({aαγ1, ..., a
α
γn
}) such that for all

1 ≤ k ≤ n , π(bik) = aαγk
.

Proof. By Lemma 10.6 it is enough to prove (ii) in the case I = ω . Furthermore,
by (i) and (a), it is enough to prove (b) in the case ik = k for all 1 ≤ k ≤ n ∈ IN−{0} .
We do this.

By recursion on n ∈ IN we construct n -types Φn over ∅ in vocabulary LS , and
for α < λ , αn ∈ λ− α and Xα

n ⊆ (iαn(κ))+ of power ≥ (iα(λ))+ so that
(I) αn < βn for α < β and αn+1 = βn for some β ≥ α and then Xα

n+1 ⊆ Xβ
n ,

(II) for all φ(v1, ..., vn) and i1 < ... < in from Xα
n , φ(v1, ..., vn) ∈ Φn iff

AS
αn |= φ(aα

n

i1
, ..., aα

n

in
),

(III) if (a1, ..., an) ∈ An realizes Φn , then (a1, ..., an) is n -indiscernible over ∅ ,
(IV) Φn ⊆ Φn+1 .
n = 0: Since the number of possible LS -theories is < λ , there is X ⊆ λ of power

λ such that for all α, β ∈ X , Th(AS
α) = Th(AS

β ) and we let Φ0 be the common

theory. α0 = min(X − {β0| β < α}) and Xα
0 = (iα0(κ))+ . Clearly (I)-(IV) hold.

n = m+ 1: For all α < λ , let αn∗ = (α+ n)m and notice that
(*) |Xα+n

m | ≥ (im(iα(λ)))+ .

Define fαn : [Xα+n
m ]n → Sn(∅) so that fαn (i1, ..., in) = t((a

αn
∗

i1
, ..., a

αn
∗

in
)/∅;AS

αn
∗

). Since
(**) |Sn(∅)| < λ ,

by Erdös-Rado and (*) above, there is homogeneous Xαn
∗ ⊆ Xα+n

m of power ≥ iα(λ).
Let pαn

∗

be the constant value.
By (**), there is X ⊆ {αn∗ | α < λ} of power λ and p such that for all γ ∈ X ,

pγ = p . Now let αn = min(X −{βn| β < α}), Xα
n = Xαn and Φn = p . Notice that

by the assumptions (I) and (II) for m , Φm ⊆ Φn . So clearly (I)-(IV) hold.
Then we let Φ = ∪n<ωΦn . This is as wanted (exercise).

11.8 Corollary. Let κ = |Lωω| and suppose that T is a theory and D is a
collection of types over ∅ . If for all λ < i(2κ)+ there is A |= T of power ≥ λ such
that it omits every p ∈ D , then for all θ ≥ κ there is A |= T of power θ such that
it omits every p ∈ D .

Proof. For all α < (2κ)+ , since (iα((2κ)+))+ < i(2κ)+ , we can find Aα |= T
and aαi ∈ Aα , i < (iα((2κ)+))+ such that
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(i) aαi 6= aαj for i 6= j ,

(ii) Aα omits every p ∈ D .

Let Φ be as in Theorem 11.7. Let B and bi , i < θ , be as in Theorem 11.7 (ii) for
(I, <) = (θ,<). We claim that C = SH({bi| i < θ}) � L is as wanted.

Clearly |C| = θ . Also C � B and thus C |= T . Finally, suppose p ∈ D .
For a contradiction, assume that c = (c1, ..., cm) ∈ Cm realizes p . Then there are
i1 < ... < in in θ such that ci ∈ SH({bi1 , ..., bin}) = D for all 1 ≤ i ≤ m . Since
D � L � C , c realizes p in D . Let α , γ1, ..., γn and π be as in Theorem 11.7
(ii)(b). Then d = (π(c1), ..., π(cm)) realizes p is D′ = SH({aαγ1 , ..., a

α
γn
}) � L . Since

D′ � Aα , d realizes p in Aα , a contradiction.

The model C = SH({bi| i ∈ I}) � L from the proof of Corollary 11.8 is called
an Ehrenfeucht-Mostowski model and is denoted by EM(I,Φ). Notice that I and
Φ determine EM(I,Φ) upto isomorphism (and not more). It is also important to
notice that although the easiest way to show that EM(I,Φ) exists (i.e. that the set
Φ constructed in the proof of Theorem 11.7 satisfies (ii) from the theorem) is to use
compactness, this can also be done without it and thus the construction works in
many other context than the one above.

Recall that Remark 9.3 shows that in Corollary 11.8, one can not replace i(2κ)+

by κ+ .

11.9 Exercise. Show that in Corollary 11.8, one can not replace i(2κ)+ by
any cardinal < iκ+ . (Hint: Look at models in which there are a countable set, codes
for subsets of the set, codes for subsets of subsets of the set etc.)

12. Lκω and omitting types

12.1 Definition. Lκω -formulas are defined as follows:

(i) atomic formulas φ are Lκω -formulas and vi is free in φ is it appears in φ ,

(ii) if ψ is Lκω -formula, then so are ¬ψ and ∃vkψ and vi is free in ¬ψ if it is
free in ψ and it is free in ∃vkψ if it is free in ψ and k 6= i ,

(iii) if |I| < κ , for all i ∈ I , ψi is Lκω -formula and there is n ∈ IN such that
for all i ∈ I , if vk is free in ψi , then k < n , then

∧
i∈I ψi is a formula and vk is free

in
∧
i∈I ψi if it is free in some ψi .

An Lκω -formula φ is an Lκω -sentence if no vk is free in φ .

Notice that for all Lκω -formulas φ , only finitely many vk are free in φ . The
notation φ(x) is used as in the case of first-order logic and also A |= φ(a) is defined as
in the case of first-order logic (A |= (

∧
i∈I ψi)(a) if A |= ψi(a) for all i ∈ I ). Symbols∨

, → , ↔ and ∀ are used as in the case of first-order logic (
∨
i∈I ψi = ¬

∧
i∈I ¬ψi ).

Notice that Lωω is still the first-order logic (i.e. the two definitions for Lωω coincide)
and we say that φ is L∞ω -formula if it is Lκω -formula for some κ .

12.2 Definition. Let κ be a cardinal or ∞ . We say that A and B are Lκω
equivalent (A ≡κω B ) if for all Lκω -sentences φ , A |= φ iff B |= φ .
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12.3 Theorem. The following are equivalent:
(i) A ≡∞ω B ,
(ii) II ↑ EFω(A,B) .

Proof. (ii)⇒(i): Exactly as in the first-order case (just forget the quantifier
ranks).

(i)⇒(ii): Clearly it is enough to prove the following claim:

1 Claim. If A ≡∞ω B , then for all a ∈ A , there is b ∈ B such that (A, a) ≡∞ω

(B, b) .

Proof. Suppose not. Then for all b ∈ B there is an L∞ω -formula φb(v1)
such that A |= φb(a) but B 6|= φb(b). Then A |= ∃v1

∧
b∈B φb(v1) but B 6|=

∃v1
∧
b∈B φb(v1), a contradiction. Claim 1.

12.4 Definition. Lκω -formulas in negation normal form are defined as follows:
Lκω -formula φ is in negation normal form if it is atomic or negated atomic formula,
or of the form ∃viψ or ∀viψ , where ψ is in negation normal form or of the form∧
i∈I ψi or

∨
i∈I ψi , where each ψi is in negation normal form.

12.5 Lemma. For all Lκω -formulas φ(x) , x = (x1, ..., xn) , there is an Lκω -
formula ψ(x) in negation normal form such that for all A and a ∈ An , A |= φ(a)
iff A |= ψ(a) .

Proof. Clearly it is enough to prove the following claim (exercise):

1 Claim. For all Lκω -formulas φ(x) in negation normal form, x = (x1, ..., xn) ,
there is an Lκω -formula ψ(x) in negation normal form such that for all A and
a ∈ An , A |= ¬φ(a) iff A |= ψ(a) .

Proof. Easy induction on φ . E.g. if φ =
∧
i∈I θi , then by the induction as-

sumption there are Lκω -formulas θ′i in negation normal form such that for all A and
a ∈ An , A |= ¬θi(a) iff A |= θ′i(a) and we can choose ψ =

∨
i∈I θ

′
i . Claim 1.

12.6 Lemma. Suppose T is a theory and D is a collection of types. Let κ
be such that |Lωω|, |D| < κ . Then there is an Lκω -sentence φ such that for all A ,
A |= φ iff A |= T and A omits every p ∈ D .

Proof. Exercise.
In the following definition, we assume that v0 does not appear in φ and when

we write φ(x), x = (x1, ..., xn), we assume that x is chosen so that vi ∈ {x1, ..., xn}
iff vi is free in φ . And in item (iv) our notation is even more sloppy than usually.

12.7 Definition. Suppose φ is an Lκω -sentence in negation normal form.
(i) A fragment Fφ of φ is defined as follows:

(a) if φ is atomic or negated atomic formula, then Fφ = {φ} ,
(b) if φ =

∧
i∈I ψi or φ =

∨
i∈I ψi , then Fφ = {φ} ∪

⋃
i∈I Fψi

,
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(c) if φ = ∃vkψ or φ = ∀vkψ , then Fφ = {φ} ∪ Fψ .
(ii) Lφ = L∪ {Rψ(x1,...,xn)| ψ ∈ Fφ} , where Rψ are new n+ 1 -ary relation symbols.

(iii) Tφ consists of the following formulas:

(a) if ψ(x1, ..., xn) ∈ Fφ is atomic or negated atomic formula then
∀v0∀x1...∀xn(Rψ(v0, x1, ..., xn) ↔ ψ(x1, ..., xn)) ∈ Tφ ,
(b) if ψ(x1, ..., xn) =

∧
i∈I ψi ∈ Fφ , then for all i ∈ I ,

∀v0∀x1...∀xn(Rψ(v0, x1...xn) → Rψi
(v0, x1, ..., xn)) ∈ Tφ ,

(c) if ψ(x1, ..., xn) =
∨
i∈I ψi ∈ Fφ , then for all i ∈ I ,

∀v0∀x1...∀xn(Rψi
(v0, x1...xn) → Rψ(v0, x1, ..., xn)) ∈ Tφ ,

(d) if ψ(x1, ..., xn) = ∃xθ(x, x1, ..., xn) ∈ Fφ , then

∀v0∀x1...∀xn(Rψ(v0, x1, ..., xn) ↔ ∃xRθ(v0, x, x1, ..., xn)) ∈ Tφ ,
(e) if ψ(x1, ..., xn) = ∀xθ(x, x1, ..., xn) ∈ Fφ , then
∀v0∀x1...∀xn(Rψ(v0, x1, ..., xn) ↔ ∀xRθ(v0, x, x1, ..., xn)) ∈ Tφ ,
(f) ∀v0Rφ(v0) .

(iv) Dφ consists of the following types:
(a) if ψ(x1, ..., xn) =

∧
i∈I ψi ∈ Fφ , then

{¬Rψ(v0, v1...vn)} ∪ {Rψi
(v0, v1, ..., vn)| i ∈ I} ∈ Dφ ,

(b) if ψ(x1, ..., xn) =
∨
i∈I ψi ∈ Fφ , then

{Rψ(v0, v1...vn)} ∪ {¬Rψi
(v0, v1, ..., vn)| i ∈ I} ∈ Dφ .

12.8 Lemma. Suppose φ is an Lκω -sentence in negation normal form.
(i) For all L -structures A , if A |= φ , then there is an Lφ -structure B |= T φ so

that B omits every p ∈ Dφ and B � L = A . Furthermore such B is unique.
(ii) If A |= Tφ is an Lφ -structure and A omits every p ∈ Dφ , then A � L |= φ .

Proof. Just check the definitions (exercise).

12.9 Theorem. Suppose φ is an Lκ+ω -sentence such that for all λ < i(2κ)+ ,
there is A |= φ of power ≥ λ . Then for all λ ≥ κ , there is A |= φ of power λ .

Proof. Clearly in φ at most κ symbols from the vocabulary can appear and
thus we may assume that |Lωω| ≤ κ . But then the claim is immediate by Lemmas
12.5 and 12.8 and Corollary 11.8.

12.10 Remark. Suppose F is a collection of Lκ+ω -formulas of power ≤ κ
and A ⊆ A . Then there is a substructure B of A of power |A|+κ such that A ⊆ B
and for all φ(x1, ..., xn) ∈ F and a ∈ Bn , B |= φ(a) iff A |= φ(a) .

Proof. Clearly we may assume that if ∧i∈Iψi ∈ F , then ψi ∈ F for all i ∈ I
and that if ¬ψ ∈ F or ∃vkψ ∈ F , then ψ ∈ F . Then we can proceed as in the
first-order case (exercise).
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