Malliteoria Harjoitus 6

1. Show that there are \mathcal{A} and \mathcal{B} such that they are elementarily equivalent but II does not win $EF_1(\mathcal{A}, \mathcal{B})$.

2. Let $L = \{S\}$, S a unary function symbol. For $1 < n < \omega$, let \mathcal{A}_n be an L-structure such that $dom(\mathcal{A}_n) = \{0, ..., n\}$ and $S^{\mathcal{A}_n}(x) = x + 1$ if x < n and otherwise 0. Let \mathcal{A}_{ω} be such that $dom(\mathcal{A}_{\omega}) = \mathbf{Z}$ and $S^{\mathcal{A}_{\omega}}(x) = x + 1$ for all $x \in \mathbf{Z}$. Show that if $n \geq 2^{k+1}$, then $II \uparrow EF_k(\mathcal{A}_{\omega}, \mathcal{A}_n)$.

3. Let *L* be as above. Find *L*-structures \mathcal{A} and \mathcal{B} such that they are elementarily equivalent but there is $a \in \mathcal{A}$ such that $a \notin dom(f)$ for any partial isomorphism $f : \mathcal{A} \to \mathcal{B}$.

4. Show that for all $n < \omega$, $EF_n(\mathcal{A}, \mathcal{B})$ is determined i.e. if I does not have a winning strategy for $EF_n(\mathcal{A}, \mathcal{B})$ (this is defined as for II), then $II \uparrow EF_n(\mathcal{A}, \mathcal{B})$.