Malliteoria
Harjoitus 3

1. Using Theorem 10.3 (Ramsay's theorem) and compactness, show that for all $m \in \mathbb{N}$ there is $n \in \mathbb{N}$ such that $n \rightarrow(m)_{2}^{2}$ (see Definition 10.2).
2. Suppose $A \subseteq \mathcal{A}$ and $B=\left\{t^{\mathcal{A}}(a) \mid t\left(x_{1}, \ldots, x_{n}\right)\right.$ is a term and $\left.a \in \mathcal{A}^{n}\right\}$. Show that for all $f \in L$ and $b \in B^{\# f}, f^{\mathcal{A}}(b) \in B$.
3. Suppose $\operatorname{dom}(\mathcal{B}) \subseteq \operatorname{dom}(\mathcal{A})$, for all $R \in L, R^{\mathcal{B}}=R^{\mathcal{A}} \cap \operatorname{dom}(\mathcal{B})^{\# R}$, for all $f \in L, f^{\mathcal{B}}=f^{\mathcal{A}} \upharpoonright \operatorname{dom}(\mathcal{B})^{\# f}$ and for all $c \in L, c^{\mathcal{B}}=c^{\mathcal{A}}$. Show that for all terms $t\left(x_{1}, \ldots, x_{n}\right)$ and $a \in \operatorname{dom}(\mathcal{B})^{n}, t^{\mathcal{B}}(a)=t^{\mathcal{A}}(a)$.
4. Suppose $f: \mathcal{B} \rightarrow \mathcal{A}$ is a partial isomorphism, $\mathcal{C}$ is the submodel generated by $\operatorname{dom}(f)$ (i.e. $\operatorname{dom}(\mathcal{C})=\left\{t^{\mathcal{B}}(a) \mid t\left(x_{1}, \ldots, x_{n}\right)\right.$ is a term and $\left.\left.a \in \operatorname{dom}(f)^{n}\right\}\right)$ and define $g: \mathcal{C} \rightarrow \mathcal{A}$ so that for all terms $t\left(x_{1}, \ldots, x_{n}\right)$ and $a \in \operatorname{dom}(f)^{n}$, $g\left(t^{\mathcal{B}}(a)\right)=t^{\mathcal{A}}(f(a))$. Show that $g$ is well-defined and an embedding.
5. Prove Lemma 5.4.
