Malliteoria

Harjoitus 11

1.

- (i) Show that if \mathcal{A} and \mathcal{B} are countable and $\mathcal{A} \equiv_{\infty,\omega} \mathcal{B}$ then $\mathcal{A} \cong \mathcal{B}$.
- (ii) Show that if $\mathcal{A}, \mathcal{B} \models T_{dlo}$ then $\mathcal{A} \equiv_{\infty, \omega} \mathcal{B}$.
- (iii) Show that $(\mathbf{R}, <) \not\cong (\mathbf{R} \{0\}, <)$.

2. Suppose $\kappa > \omega$ is such that $L_{\kappa\omega}$ is κ -compact i.e. if T is a collection of $L_{\kappa\omega}$ -sentences of size κ and every $T' \subseteq T$ of size $< \kappa$ has a model, then T has a model. Show that κ is regular i.e. every $A \subseteq \kappa$ of size $< \kappa$ is bounded in κ .

3. Suppose $\kappa > \omega$ is such that $L_{\kappa\omega}$ is κ -compact. Show that κ is not a successor cardinal.