1. The probability distribution of a discrete random variable X is given by

$$
\mathbb{P}(x=-1)=\frac{1}{5}, \quad \mathbb{P}(x=0)=\frac{2}{5}, \quad \mathbb{P}(x=1)=\frac{2}{5}
$$

(a) Compute $\mathbb{E}(X)$.
(b) Give the probability distribution of $Y=X^{2}$ and compute $\mathbb{E}(Y)$ using the distribution of Y.
(c) Determine $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$.
2. Find a) $\mathbb{E}(X)$, b) $\mathbb{E}\left(X^{2}\right)$, c) $\mathbb{E}(X-\mu)^{2}$ for the following probability distribution

$$
\mathbb{P}(x=8)=\frac{1}{8}, \quad \mathbb{P}(x=12)=\frac{1}{6}, \quad \mathbb{P}(x=16)=\frac{3}{8} \quad \mathbb{P}(x=20)=\frac{1}{4} \quad \mathbb{P}(x=24)=\frac{1}{2}
$$

3. For a certain random variable with $\mathbb{E}(X)=2, \operatorname{Var}(X)=4$. Compute the expectation the exceptation and variance of $3-2 X$.
4. If a man purchases a raffle ticket, he can win a first prize of $€ 5000$ or a second prize of $€ 2000$ with probabilities 0.001 and 0.003 . What should be a fair price to pay for the ticket?.
