introduction to statistics Fall 2010

Exercise 7

1. The probability distribution of a discrete random variable X is given by $P(x=-1)=\frac{1}{5} \quad P(x=0)=\frac{2}{5} \quad P(x=1)=\frac{2}{5}$
(a) Compute $E(X)$.

$$
\sum x_{i} P\left(X=x_{i}\right)=0.2
$$

(b) Give the probability distribution of $Y=X^{2}$ and compute $E(Y)$ using the distribution of Y.

$$
\begin{aligned}
& P\left(y=x^{2}=0\right)=\frac{2}{5} \\
& P\left(y=x^{2}=1\right)=\frac{3}{5} \\
& E(Y)=\sum y_{i} P\left(Y=y_{i}\right)=\frac{3}{5}
\end{aligned}
$$

(c) Determine $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$.

$$
\begin{aligned}
& \operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=E(Y)-[E(X)]^{2}=\frac{14}{25} \text { or } 0.56 \\
& \operatorname{Var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}=E(Y)-[E(Y)]^{2}=\frac{6}{25} \text { or } 0.24
\end{aligned}
$$

2. Find $\left.a) E(X), b) E\left(X^{2}\right), c\right) E(X-\mu)^{2}$ for the following probability distribution $P(x=8)=\frac{1}{8}, P(x=12)=\frac{1}{6}, P(x=16)=\frac{3}{8}, P(x=20)=\frac{1}{4}, P(x=24)=\frac{1}{2}$
a) $\mathrm{E}(\mathrm{X})=26$
b) $\mathrm{E}\left(X^{2}\right)=\sum x_{i}^{2} P\left(X=x_{i}\right)=516$
c) Because $\sum P(X=x)>1$

$$
\operatorname{Var}(\mathrm{X})=E\left(X^{2}\right)-[E(X)]^{2}=-160
$$

3. For a certain random variable with $E(X)=2 \operatorname{Var}(X)=4$. Compute the expectation and variance of $\mathbf{3 - 2 X}$.

Using properties of expectation and variance:

$$
\begin{aligned}
& E(3-2 X)=3-2 \times E(X)=3-2 \times 2=-1 \\
& \begin{aligned}
\operatorname{Var}(3-2 X) & =0+(-2)^{2} \times \operatorname{Var}(X) \quad \text { The variance of a constant is } 0! \\
& =4 \times \operatorname{Var}(X)=4 \times 4=16
\end{aligned}
\end{aligned}
$$

4. If a man purchases a raffle ticket, he can win a first prize of 5000 €or a second prize of $2000 €$ with probabilities 0.001 and 0.003 . What should be a fair price to pay for the ticket?.

Let $P($ win $=0)=P($ not winning either prize $)$.
Fair price (\mathbf{F}) is defined as the case where expected gain $=\mathbf{0}$.
Then,

$$
E(\text { gain })=E(\text { win })-E(\text { loss })=0
$$

$$
0=5000 \times P(\text { win }=5000)+2000 \times P(\text { win }=2000)-F \times P(\text { win }=0)
$$

Substituting in probability values and moving E(loss) to the left side of the equation gives us:

```
\(F \times(1-0.001-0.003)=5000 \times 0.001+2000 \times 0.001\)
\(F \times(0.996)=11\)
\(F=11 / 0.996 \approx 11.04418\)
```

Fair price of the raffle ticket is approximately $11,05 €$.

