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Evolution in heterogeneous environments

Many species live in habitat patches with different environments (such as dryer or
wetter) or exploit different kinds of hosts (e.g. different plant species for a
phytophagous insect). Different habitats often need different adaptations. A species
inhabiting different patches may evolve into a generalist (a jack-of-all-trades, which is
not particularly well adapted to either environment but can exploit all) or a habitat
specialist (which is doing poorly in alternative habitats). To investigate the evolution
of habitat specialization, we set up a model for an annual organism in discrete time.
We assume that fecundity in habitat i is a Gaussian-type function of phenotype x with
a habitat-specific optimum,
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Offspring undergo density-dependent mortality according to the Beverton-Holt model
of population dynamics (see e.g. P. Yodzis: Introduction to theoretical ecology,
Harper & Row, 1989), such that the probability of survival in patch i, if it initially
contains iN  offspring, is given by
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Here ib  characterizes the size of patch i (large values of b correspond to small patches
that can carry only few individuals). With only a single patch, the year-to-year
dynamics is given by
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where N denotes population size after reproduction and just before the stage of
density dependent survival.

When the population inhabits several patches, then the patches are connected via
dispersal. We assume that dispersal occurs after density dependence and before
reproduction, i.e., the life cycle is reproduction - density-dependent survival -
dispersal - reproduction - ... At dispersal, a fraction ijm  of the individuals present in
patch j migrate into patch i. Dispersal entails no cost (e.g., there is no risk of mortality
due to dispersal). The joint dynamics of n patches is then given by the system of
difference equations
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for 1,...,i n , where we define 1ii ji
j ì

m m  the fraction of individuals which stay

in patch i.

Different strategies differ in only their phenotype x and in their habitat-specific
fecundity ( )i x , but share all other properties. In particular, density-dependent
survival is determined by the total number of individuals within a patch, irrespectively
of which strategies they are. Denoting the number of individuals with phenotype kx  in
patch i by ( ) ( )k

iN t , the dynamics for K different strategies follows
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Consider first only two patches of equal size ( 1 2b b ) and with symmetric dispersal
( 12 21m m m ). Let d denote the difference between the habitat-specific optimal
phenotypes and scale x such that 1  and 1 / 2d , 2 / 2d . By scaling N, one
can also set 1 1b  without loss of generality. Explore the adaptive dynamics for
different values of d and m (for the other parameters, / 1.5a c  and 1c  are good
starting values). Obtain bifurcation diagrams for the monomorphic evolutionary
singularity, and construct at least one example for the evolution of coexisting
strategies after branching. Next, vary the relative size of the two patches ( 2 1/b b ), and
study its effect on monomorphic and dimorphic evolution. Argue that as long as the
population  attains a stable fixed point, no more than two strategies will coexist.

If time permits, it is interesting to extend the model to three patches. Assume that the
patches are of equal size and dispersal distributes all offspring equally over all patches
( 1/ijm n  where n is the number of patches). By symmetry, one expects either a
single generalist strategy to evolve or three habitat specialists. Evolutionary branching
can however split the population only into two, not three, branches. Explore how the
population evolves when a single generalist is not evolutionarily stable.


