
ADAPTIVE DYNAMICS 2012

SOLUTIONS TO EXERCISES 1-2

Exercise 1

Consider the Lotka-Volterra competition model:

ṅi = r(xi)ni

1−
l∑

j=1

a(xi, xj)nj
k(xi)

 i = 1, ..., l (1)

where

• ni is the population density of the strategy xi,

• r(xi) is the intrinsic rate of increase,

• k(x) is the carrying capacity,

• a(x, y) is the competition kernel.

In our case, we have 2 different densities of strategies

• n for the resident with strategy x and

• m for the mutant with strategy y.

Since we set a(x, x) = a(y, y) = 1, we have the dynamical systemṅ = r(x)n
(

1− n+a(x,y)m
k(x)

)
ṁ = r(y)m

(
1− m+a(y,x)n

k(y)

) (2)

see page 2 of the second lecture notes.

(a) Phase plane analysis

How to do a phase plane analysis:

• First, look at the conditions, in this case n, m ≥ 0 (shaded zone)

• Draw the isoclines of ṅ = 0 and ṁ = 0.

ṁ = 0⇔ r(y)m

(
1− m+ a(y, x)n

k(y)

)
= 0

⇔

{
m = 0 or

1− m+a(y,x)n
k(y) = 0

⇔

{
m = 0 or

m = k(y)− a(y, x)n

That gives the isocline ṁ = 0.

ṅ = 0⇔ r(x)m

(
1− m+ a(x, y)n

k(x)

)
= 0

⇔

{
n = 0 or

1− n+a(x,y)m
k(x) = 0

⇔

{
n = 0 or

n = k(x)− a(x, y)m⇔ m = n−k(x)
a(x,y)
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• Find where they cross: that gives the equilibrium and you can see if there are different
cases.

Where do we have ṁ = ṅ = 0.

n = 0⇒ m = k(y) or m = 0

gives the first equilibrium (0, k(y)). Also if m = 0 that gives n = k(x).

• Draw the isoclines and look at the direction of the flow.

We have 2 lines to draw: {
m = k(y)− a(y, x)n (ṁ = 0)

m = n−k(x)
a(x,y) (ṅ = 0)

We have 3 different cases,

(1) k(y) > k(x)
a(x,y)

(2) k(y) = k(x)
a(x,y)

(3) k(y) < k(x)
a(x,y)

Let’s consider the first case k(y) > k(x)
a(x,y) :

Remember that when the flow crosses the isocline of ṅ = 0, it can cross only vertically
since ṅ = 0 so there is no speed in the n-direction. Similarly, the arrows of the direction
of the flow has to be horizontal when it crosses ṁ = 0.

To find the direction of the arrows in the region below the isocline of ṅ = 0 (red line),
take a point, for example (ε, ε) and see the sign in equations (2). You findṅ = r(x)ε

(
1− ε+a(x,y)ε

k(x)

)
> 0

ṁ = r(y)n
(

1− ε+a(y,x)ε
k(y)

)
> 0

so the arrow points upward and that extends to the region that doesn’t cross the
isocline ṅ = 0. The arrows also point to the right and that extends to the region that
doesn’t cross the isocline ṁ = 0. Similarly, you find for the point (k(x), ε)ṅ = r(x)k(x)

(
1− k(x)+a(x,y)ε

k(x)

)
< 0

ṁ = r(y)ε
(

1− ε+a(y,x)k(x)
k(y)

)
and by assumption k(y) > k(x)

a(x,y) therefore ṁ < 0.

• Look at the equilibrium, the intersection of the isoclines ṁ = 0 = ṅ and see in which
direction the arrows are going.
- At least one arrow pointing away from the equilibrium ⇒ not stable.
- All the arrow pointing toward the equilibrium ⇒ stable.
- Damn!! It’s turning around the equilibrium⇒ need some further study to know. We
have to look at the eigenvalues of the Jacobi matrix. (See exercise 4 from Mathematical
modeling on the following adress)

http://wiki.helsinki.fi/display/mathstatKurssit/Mathematical+modeling%2C+spring+2012

(*) The case k(y) > k(x)
a(x,y)

By looking at the figure 1,we can conclude that:

• n = k(x) is an unstable equilibrium,
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Figure 1: Isoclines in the case k(y) > k(x)
a(x,y) .

• m = k(y) is a stable equilibrium,

• (0, 0) is an unstable equilibrium.

This is a case of invasion and substitution.

Remark 0.1. Notice that the plot of the arrows could be easily done using the fact that
when m = 0 for example, the Lotka-Volterra equation becomes the logistic equation which
has n = k(x) as stable equilibrium and n = 0 as unstable equilibrium. Thus we know that
the arrows point toward k(x) and away from 0. That gives the orientation of the arrows in
general. No need to compute at various point. Do the same for m.

(**) The case k(y) = k(x)
a(x,y)

The whole line ṅ = ṁ = 0 in figure 2 is made of stable equilibrium. This is invasion and coexistence.

(***) The case k(y) < k(x)
a(x,y)

From the figure 3, we can conclude that:

• n = k(x) is a stable equilibrium,

• m = k(y) is an unstable equilibrium,

• (0, 0) is an unstable equilibrium.

This is a case of non invasion.

(b) For this exercise where we give the conditions for invasion and substitution, non invasion
and invasion and coexistence, we recall the definition of the invasion fitness.

Sx(y) = lim
m→0
n→k(x)

d logm

dt
=
ṁ

m

with ṁ = r(y)m
(

1− m+a(y,x)n
k(y)

)
. The m→ 0 corresponds to the introduction of 1 mutant

or very few and n = k(x) is because we are at equilibrium of the resident dynamics.
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Figure 2: Isoclines in the case k(y) = k(x)
a(x,y) .

Therefore we have

Sx(y) = r(y)

(
1− a(y, x)k(x)

k(y)

)
where we usually take r(y) = 1 for simplicity.

Remark 0.2. Notice that since Sx(y) = lim m→0
n→k(x)

ṁ
m and m > 0, Sx(y) and ṁ have the

same sign on a neighbourhood of (k(x), 0) which gives the stability of the equilibrium.

Conditions for

(i) Non invasion: k(x)
a(x,y) > k(y).

That implies

k(x)

a(x, y)
> k(y)⇔ k(y)a(x, y)

k(y)
< 1

⇔ r(x)

(
1− k(y)a(x, y)

k(y)

)
> 0

⇔ Sy(x) > 0

under the condition that Sx(y) = 0. Therefore{
Sx(y) = 0

Sy(x) > 0
⇔ Non invasion

meaning that if Sx(y) = 0 (i.e y is neutral to invade x) and x can invade y then y
can’t invade x.

(ii) Invasion & substitution: k(x)
a(x,y) < k(y).

That is equivalent to

r(x)

(
1− k(y)a(x, y)

k(y)

)
> 0⇔ Sy(x) < 0
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Figure 3: Isoclines in the case k(y) < k(x)
a(x,y) .

with the condition that Sx(y) = 0. Therefore{
Sx(y) = 0

Sy(x) < 0
⇔ Invasion & substitution

(iii) Invasion & coexistence: k(x)
a(x,y) = k(y).

With the condition Sx(y) = 0, that is equivalent to{
Sx(y) = 0

Sy(x) = 0
⇔ Invasion & coexistence

(c) Pairwise Invadability Plot if k(x) = e−x
2

and a(x, y) = e−α(x−y)
2

with α = 1.

We do not assume anymore that Sx(y) = 0. This was only for the questions (a) and (b).

Let’s compute Sx(y)

Sx(y) = lim
m→0
n→k(x)

ṁ

m
= r(y)

(
1− a(y, x)n+m

k(y)

)∣∣
m=0,m=k(x)

= 1− a(y, x)k(x)

k(y)
where r(y) = 1

= 1− e−(x−y)
2
e−x

2

e−y2

= 1− e−2x(x−y)

Thus solving the equation Sx(y) = 0, we find the conditions

Sx(y) = 0⇔ 1− e−2x(x−y) = 0

⇔ −2x(x− y) = 1

⇔ x = 0 or x = y
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Figure 4: Sign plot of Sx(y).

Then we compute Sx(y) for different points (x, y) to find the sign in the different regions
and we get the following plot, see figure 4

(d) Any Evolutionarily Stable Strategies (ESS)?

We recall the definition of an ESS from page 8 of the second lecture notes.

Definition: A strategy is evolutionarily stable if no y 6= x can invade.

From the sign plot of Sx(y), we can see that no x 6= 0 is an ESS.

If x < 0 then x < y < 0 is such that Sx(y) > 0 so y can invade x and
if x < 0 then 0 < y < x is such that Sx(y) > 0 so y can invade x.

For x = 0 then Sx(y) = 0 which we studied before. We have to look at Sy(x) and use
question (b). If we plot Sy(x), we find

x

y

+

+−

−

x = 0

Figure 5: Sign plot of Sy(x).

and we see that for x = 0, Sy(x) > 0 so there is no invasion and x = 0 is an ESS.

(e) Which strategies can coexist?

We superimpose the sign plots of Sx(y) and Sy(x). See p.8 of the second lectures notes.

Two strategies can coexist if they are in a ++ region so x > 0 and y < 0 or x < 0 and
y > 0 can coexist according to figure 6
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Figure 6: Superimposed sign plot.

(f) Strategy dynamics with monomorphic resident population with small mutation steps

Let x < 0 then by question (d), if x < y ≤ 0 then y invades and that way, it converges to
0. Then, as we saw in question (d) again, x = 0 is an ESS so we remain there.

If x > 0 then similarily, it converges to 0 which is an ESS.

Exercise 2

Lotka Volterra competition model with k(x) = e−x
2

and a(x, y) = e−α|x−y|, α > 0.

(a) Pairwise invadability plot (PIP)

Sx(y) = lim
m→0
n→k(x)

1− a(y, x)n+m

k(y)
= 1− a(y, x)k(x)

k(y)

with k(x) and a(y, x) given above so

Sx(y) = 1− e−α|x−y|e−x
2

e−y2
= 1− e−α|x−y|−x2+y2

Therefore Sx(y) = 0 is equivalent to the equation

−α|x− y| − x2 + y2 = 0 (3)

We have to work on 2 different cases

1. if y ≥ x the equation (3) becomes

α(x− y)− x2 + y2 = 0⇔ (x− y)(α− x− y) = 0

⇔ x = y or y = α− x y ≥ x

We look at the signs by computing Sx(y) at the poimts (x, y) = (−α, 0) (Sx(y) > 0) and
(0, 2α) where Sx(y) < 0. That gives for the region y ≥ x the sign plot figure 7.

2. if y ≤ x the equation (3) becomes

−α(x− y)− (x− y)(x+ y) = 0⇔ (x− y)(−α− x− y) = 0

⇔ x = y or y = −α− x y ≤ x

We look at the signs by computing Sx(y) at the poimts (x, y) = (α, 0) (Sx(y) > 0) and
(0,−2α) where Sx(y) < 0. That gives for the region y ≥ x, the sign plot, figure 8.

Finally, the full sign plot (PIP) is given by the figure 9.
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Figure 8:

(b) Dependence on α

lim
α→0

α− x = −x = lim
α→0
−x− α

(c) Evolutionarily stable strategies

From the pairwise invadability plot, figure 9, we can see that for any x, there exists a y
such that Sx(y) > 0 so x can be invaded by y and therefore there is no ESS.

(d) Coexistence

Two strategies x and y can coexist if Sx(y) > 0 and Sy(x) > which correpsonds on the sign
plot to a region ++ on the superimposed sign plot, figure 10.

For −α− x < y < α− x then there can be coexistence.

(e) Strategy dynamics starting with a monomorphic resident population and with small muta-
tion steps

For any x < −α
2 then any x < y invades. By small steps, it converges to x = −α

2 . Then
there can be coexistence. If you think of a plot with strategies plotted with respect to time
then this looks like the plot of the case α > 1 on p.3 of the first lecture notes. The process
first slowly converges to the value −α

2 and then it branches.
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Figure 10:
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