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CHAPTER 1

Introduction

In this course we will provide a complete solution for the inverse

boundary value problem for the elliptic operator ∆ + V on a Riemann

surface. That is, on a Riemann surface M we will recover the coefficient

V from boundary data of the solutions of the equation (∆ + V )u = 0.

This problem turns out to have rich topological and geometrical

structure. In this course we will see where these geometrical consider-

ations arise and what are the tools needed to understand these prob-

lems. The course also gives an introduction to Riemann surfaces (no

prior knowledge is assumed).

The prerequisites for reading these lecture notes include a basic

knowledge of real and complex analysis and also functional analysis.

Chapters 1–11 and 14 of Rudin [10] should be more than sufficient for

this purpose.

Familiarity with differential geometry, Riemannian geometry, and

partial differential equations will also be helpful, although we will re-

view (mostly without proofs) all the results that are needed. Our basic

reference for differential geometry and the theory of smooth manifolds

is Lee [7]. A good introduction to Riemannian geometry is given in

another book of Lee [8]. However, a more useful reference for our

purposes is Taylor [12] which contains many results in Riemannian ge-

ometry from an analysis point of view. We do not assume knowledge

of the theory of Riemann surfaces, and the required results are either

proved or stated without proof. For background material on partial

differential equations, we refer to Evans [1] and Taylor [12].

We do not assume familiarity with inverse problems, and all relevant

results will be proved in full. For more information on the Calderón

problem, there is the short introduction Salo [11] and the partially

completed textbook Feldman-Uhlmann [2]. For the main part of the
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2 1. INTRODUCTION

course, which gives a solution to Calderón’s inverse problem on Rie-

mann surfaces, we will follow the two articles of Guillarmou and Tzou

[3], [4].



CHAPTER 2

The Calderón problem on Riemann surfaces

2.1. Basic setup

Let (M, g) be a smooth 2D Riemannian manifold with boundary

∂M . We denote by ∆g the Laplace-Beltrami operator on M . If V is a

smooth function on M , consider the Schrödinger equation

(−∆g + V )u = 0 in M.

We consider the inverse problem of determining the function V from the

knowledge of boundary measurements of solutions to the Schrödinger

equation (the manifold (M, g) is assumed to be known).

This is an analog of Calderón’s inverse problem of determining an

electrical conductivity γ from boundary measurements for the conduc-

tivity equation ∇ · γ∇u = 0 in a bounded domain in R2. In fact, our

result will give a solution of Calderón’s problem in 2D (for relatively

smooth γ) as a corollary by a standard reduction of the conductivity

equation to a Schrödinger equation.

More precisely the boundary measurements are given by the Cauchy

data set for H2 solutions of the Schrödinger equation, defined by

CV := {(u|∂M , ∂νu|∂M) ; u ∈ H2(M) satisfies (−∆g + V )u = 0 in M}.

If 0 is not a Dirichlet eigenvalue of −∆g + V in M , one also has the

Dirichlet-to-Neumann map

ΛV : H3/2(∂M)→ H1/2(∂M), f 7→ ∂νuf |∂M
where uf is the unique H2 solution of the Schrödinger equation with

uf |∂M = f . In this case CV is just the graph of ΛV , and knowing CV
is equivalent to knowing ΛV .

We will actually consider boundary measurements taken on an open

subset Γ of ∂M . The Cauchy data set on Γ is

CV Γ := {(u|Γ, ∂νu|Γ) ;u ∈ H2(M) satisfies (−∆g + V )u = 0 in M

and u|∂M\Γ = 0}.

3



4 2. THE CALDERÓN PROBLEM ON RIEMANN SURFACES

Again, if 0 is not a Dirichlet eigenvalue then knowing CΓ
V is equivalent

to knowing ΛV f |Γ for all f in H2(∂M) such that supp(f) ⊆ Γ.

The main result proved during this course is the following.

Theorem 2.1.1. (Guillarmou-Tzou 2009) Let (M, g) be a com-

pact oriented 2D manifold with smooth boundary, and let V1 and V2 be

smooth functions in M . If Γ is any open subset of ∂M , then CV1 = CV2

implies that V1 = V2.

As mentioned, this implies the corresponding uniqueness result

with partial data for the conductivity equation in 2D. Recall that the

Dirichlet-to-Neumann map Λγ for the conductivity equation maps f to

γ∂νu|∂Ω where u solves ∇ · (γ∇u) = 0 in Ω and u|∂Ω = f .

Theorem 2.1.2. (Imanuvilov-Uhlmann-Yamamoto 2009) Let Ω be

a bounded domain in R2 with smooth boundary, and let γ1 and γ2 be

two positive smooth functions on Ω. If Γ is any open subset of ∂M and

if

Λγ1f |Γ = Λγ2f |Γ for all f ∈ H3/2(∂Ω) with supp(f) ⊆ Γ,

then γ1 = γ2.

We now describe some ideas of the proof. The starting point is an

integral identity which relates the condition CV1 = CV2 to an integral

involving the difference of the potentials.

Lemma 2.1.3. Let V1 and V2 be two smooth functions on M . If

CΓ
V1

= CΓ
V2

, then one has∫
M

(V1 − V2)u1u2 dVg = 0

for any uj which are H2 solutions of (−∆g+Vj)uj = 0 in M and satisfy

uj|∂M\Γ = 0, j = 1, 2.

Thus, to prove that V1 = V2, it is enough to produce many solutions

uj to the Schrödinger equation which vanish on ∂M \Γ. More precisely,

we want that the set of products {u1u2} for such solutions is dense in,

say, L1(M).

The solutions that will be used are particular complex geometrical

optics solutions, which appear in most studies of inverse problems of

this type. Following an idea of Bukhgeim, the solutions will have the

form

u = eτΦm
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where τ is a large parameter, and m will have explicit form as τ →∞.

The point is that Φ will be a holomorphic function in M having a

nondegenerate critical point at (or near) a given point p of M . The

model case in the complex plane is Φ(z) = (z−z0)2 which has a critical

point at z0. The proof that V1 is equal to V2 will be modelled after the

idea that the condition∫
C
eiτ Im((z−z0)2)f dA = 0,

for a smooth compactly supported function f and for all τ > 0, will

imply that f(z0) = 0 by the method of stationary phase.

One challenge is that it is not easy to find explicit holomorphic

functions on a given Riemann surface. However, the existence of such

functions is guaranteed by general results such as the Riemann-Roch

theorem which will be used heavily in the argument. Another com-

plication is that the holomorphic functions that one obtains may have

many degenerate critical points. We will need to approximate such

functions by holomorphic functions having only nondegenerate critical

points, in order to be able to use the stationary phase method (this

is an analog of the Morse theory fact that smooth functions can be

approximated by Morse functions).

Furthermore, when dealing with partial data, we need to carry out

the constructions in such a way that the holomorphic functions will

be purely real on the inaccessible part ∂M \ Γ of the boundary. This

will allow to construct solutions vanishing on the inaccessible part. For

this, we employ a version of the Riemann-Roch theorem on manifolds

with boundary, which implies the existence of holomorphic functions

with prescribed zeros and critical points provided that the functions

are allowed to have large winding numbers (expressed in terms of the

Maslov index of a suitable bundle) on the possibly small subset Γ of

∂M .

2.2. Isothermal coordinates

In this section we show that on any oriented 2D Riemannian man-

ifold, there is a system of coordinate charts such that the metric g

becomes a scalar multiple of the identity matrix in these coordinates.

These charts are called isothermal coordinates or conformal coordinates

(also holomorphic coordinates). The main result is as follows.
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Theorem 2.2.1. (Isothermal coordinates) If (M, g) is an orientable

2D manifold, there is a system of conformal coordinate charts (Uα, ϕα).

In particular, for each α

(ϕ−1
α )∗g = λαe

where λα is a smooth positive function in ϕα(Uα), and if Uα ∩ Uβ 6= ∅
then ϕβ ◦ ϕ−1

α is holomorphic ϕα(Uα ∩ Uβ)→ ϕβ(Uα ∩ Uβ).

Here conformality of the charts means that each ϕα is a conformal

transformation, in the sense of the next definition, between (Uα, g) and

(ϕα(Uα), e) where e is the Euclidean metric in R2.

Definition. Two metrics g1 and g2 on a manifold M are called

conformal if g2 = λg1 for a smooth positive function λ on M . A diffeo-

morphism f : (M, g)→ (M ′, g′) is called a conformal transformation if

f ∗g′ is conformal to g, that is,

f ∗g′ = λg.

Two Riemannian manifolds are called conformal if there is a conformal

transformation between them.

We relate this definition of conformality to the standard one in

complex analysis by defining the angle θg(v, w) ∈ [0, π] between two

tangent vectors v, w ∈ TpM by

cos θg(v, w) =
〈v, w〉g
|v|g|w|g

.

Lemma 2.2.2. (Conformal = angle-preserving) Let f : (M, g) →
(M ′, g′) be a diffeomorphism. The following are equivalent.

(1) f is a conformal transformation.

(2) f preserves angles in the sense that θg(v, w) = θg′(f∗v, f∗w).

(3) f ∗ maps any orthonormal basis of T ∗f(p)M
′ to an orthogonal

basis, whose vectors all have the same length, of T ∗pM .

Proof. Exercise. �

The two dimensional case is special because of the classical fact that

orientation preserving conformal maps are holomorphic. The proof is

given for completeness.

Lemma 2.2.3. (Conformal = holomorphic) Let Ω and Ω̃ be open

sets in R2. An orientation preserving map f : Ω→ Ω′ is conformal iff

it is holomorphic and bijective.
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Proof. We use complex notation and write z = x+ iy, f = u+ iv.

If f is conformal then it is bijective and f ∗e = λe. The last condition

means that for all z ∈ Ω and for v, w ∈ R2,

λ(z)v · w = (f∗v) · (f∗w) = Df(z)v ·Df(z)w = Df(z)tDf(z)v · w.

Since Df(z) = ( ux uyvx vy ), this implies(
u2
x + v2

x uxuy + vxvy
uxuy + vxvy u2

y + v2
y

)
=

(
λ 0

0 λ

)
.

Thus the vectors (ux vx)
t and (uy vy)

t are orthogonal and have the

same length. Since f is orientation preserving so detDf > 0, we must

have

ux = vy, uy = −vx.
This shows that f is holomorphic. The converse follows by running the

argument backwards. �

Note that the Cauchy-Riemann equations for u and v can also be

written as

dv = ∗du
since du = ux dx + uy dy, dv = vx dx + vy dy, and since the Hodge

star satisfies ∗dx = dy, ∗dy = −dx (therefore ∗ corresponds to the

counterclockwise rotation by 90◦).

We are now ready to prove the existence of isothermal coordinates

on 2D manifolds.

Proof of Theorem 2.2.1. It is enough to show that for any

point p ∈M , there is a neighborhood U and an orientation preserving

diffeomorphism ϕ : U → Ũ onto an open set in R2 such that

ϕ∗(dx) and ϕ∗(dy) are orthogonal and have the same length.

Then ϕ is conformal by Lemma 2.2.2 and simple linear algebra, and

the condition that the ϕβ ◦ ϕ−1
α are holomorphic follows from Lemma

2.2.3 and the fact that compositions and inverses of conformal maps

are conformal.

We write ϕ = (u, v) for the first and second coordinates, and note

that ϕ∗(dx) = du, ϕ∗(dy) = dv. Since the Hodge star on 1-forms is

rotation by 90◦, ϕ satisfies the required condition provided that

dv = ∗du.
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These are the Cauchy-Riemann equations in (M, g), and they state that

u and v should be conjugate harmonic functions : taking ∗d implies

∆gu = ∗d ∗ du = ∗d(dv) = 0

and taking ∗d∗ gives ∆gv = 0.

Now, suppose u is a harmonic function defined in a simply con-

nected neighborhood U of p. Then there always exists a harmonic con-

jugate: the 1-form ∗du is closed since d(∗du) = − ∗ (∆gu) = 0, and by

Poincaré’s lemma (which in the case of 1-forms in 2D is an easy result

from vector calculus) there is a smooth function v in U with ∗du = dv.

If additionally du(p) 6= 0 then one also has dv(p) 6= 0, and the inverse

function theorem implies that ϕ = (u, v) is a diffeomorphism near p.

Thus the theorem will follow from the next result below. �

Lemma 2.2.4. If (M, g) is a 2D manifold, then for any point p ∈M
there is a harmonic function u near p satisfying du(p) 6= 0.

Proof. Let ϕ = (x1, x2) be some chart mapping a neighborhood

U of p onto the unit disc D in the plane. For ε > 0, let Dε be the disc

of radius ε and let Uε = ϕ−1(Dε). We will find a harmonic function

u in Uε approximating the scaled coordinate function x1/ε, which has

nonzero derivative at p.

More precisely, we take u to be the solution of the equation ∆gu = 0

in Uε with boundary value u|∂Uε = x1/ε. In the x coordinates one

has ∆gu(x) = |g|−1/2∂j(|g|1/2gjk∂ku(x)), and the boundary problem

becomes {
gjk(x)∂jku(x) + bk(x)∂ku(x) = 0 in Dε,

u|∂Dε = x1/ε.

We define new dilated coordinates x̃ = x/ε and the corresponding

function ũ(x̃) = u(εx̃). Then u(x) = ũ(x/ε), and the above problem is

equivalent with{
gjk(εx̃)∂jkũ(x̃) + εbk(εx̃)∂kũ(x̃) = 0 in D,

ũ|∂D = x̃1.

Thus, ũ = x̃1 + εr̃ where r̃ solves{
gjk(εx̃)∂jkr̃(x̃) + εbk(εx̃)∂kr̃(x̃) = −b1(εx̃) in D,

ũ|∂D = 0.
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By elliptic regularity, the last problem has a solution r̃ ∈ C∞(D)

satisfying

‖r̃‖H3(D) ≤ C‖b1(ε · )‖H1(D).

The constant C is independent of ε ∈ (0, 1] since the ellipticity con-

stant of (gjk(ε · )) and the C2 norms of gjk(ε · ) and bk(ε · ) are bounded

uniformly in ε. Thus by the Sobolev embedding,

‖r̃‖C1(D) ≤ C uniformly in ε.

It follows that dũ(0) 6= 0 if ε is small enough, which implies that

du(p) 6= 0 as required. �

2.3. Complex analysis

The existence of isothermal coordinates allows to define a complex

structure on any 2D oriented Riemannian manifold (M, g). Many fa-

miliar concepts in complex analysis then carry over to this situation.

This section will consist of basic definitions and lemmas.

Let ϕ = (x, y) be a conformal chart as in Theorem 2.2.1, and write

z = x+ iy and z̄ = x− iy. The variables x, y, z, z̄ will always have this

meaning in the rest of Chapter 2. Writing CV = {v+iw ; v, w ∈ V } for

a real vector space V , we obtain the complexified tangent and cotangent

bundles as the disjoint unions

CTM :=
⊔
p∈M

CTpM, CT ∗M :=
⊔
p∈M

CT ∗pM.

Then complex vector fields (resp. 1-forms) are just sections of CTM
(resp. CT ∗M). We define the vector fields

∂

∂z
:=

1

2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z̄
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

Any complex vector field can locally be written in terms of these two.

Extending d to complex differential forms by linearity, we have the

corresponding 1-forms

dz = dx+ i dy, dz̄ = dx− i dy.

The quantities dz and dz̄ are the basic 1-forms in terms of which all

complex 1-forms can be locally expressed. As an example, the exterior

derivative on functions obtains the following form.
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Lemma 2.3.1. If f is a smooth complex function on M , then

df =
∂f

∂z
dz +

∂f

∂z̄
dz̄.

Proof. Exercise. �

We extend the Hodge star operator to complex forms by linearity.

Since ∗dx = dy and ∗dy = −dx, we have

∗dz = −i dz, ∗dz̄ = i dz̄.

Thus ∗ on complex 1-forms is diagonal in the basis {dz, dz̄} and has

eigenvalues ±i. This induces a splitting of the complex cotangent bun-

dle

CT ∗M = T ∗(1,0)M ⊕ T ∗(0,1)M

where we define

T ∗(1,0)M := Ker(∗+ i), T ∗(0,1)M := Ker(∗ − i).

Locally, T ∗(1,0)M consists of multiples of dz and T ∗(0,1)M contains multi-

ples of dz̄.

We move on to the definition of ∂ and ∂ operators. First consider

the natural projections

π(1,0) : CT ∗M → T ∗(1,0)M, π(0,1) : CT ∗M → T ∗(1,0)M.

Definition. If f ∈ C∞(M) is a complex function, define

∂f := π(1,0)df, ∂f := π(0,1)df.

If ω is a complex 1-form, define

∂ω := d(π(0,1)ω), ∂ω := d(π(1,0)ω).

Lemma 2.3.2. Let f be a smooth complex function and ω a complex

1-form. Locally in the z coordinates, if ω = u dz + v dz̄ then

∂f =
∂f

∂z
dz, ∂f =

∂f

∂z̄
dz̄,

∂ω =
∂v

∂z
dz ∧ dz̄, ∂ω =

∂u

∂z̄
dz̄ ∧ dz.

One has ∂2 = ∂
2

= 0 and ∂∂ + ∂∂ = 0.

Proof. Exercise. �

We next show how the Laplace-Beltrami operator ∆g can be fac-

tored in terms of the ∂ and ∂ operators.
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Lemma 2.3.3. One has for functions

∆g = 2i ∗ ∂∂ = −2i ∗ ∂∂.

Proof. We have the decomposition d = ∂+ ∂, which is valid both

for functions and 1-forms. Thus

∆g = ∗d ∗ d = ∗(∂ + ∂) ∗ (∂ + ∂) = ∗(∂ ∗ ∂ + ∂ ∗ ∂ + ∂ ∗ ∂ + ∂ ∗ ∂).

The definition of T ∗(1,0)M and T ∗(0,1)M implies that for functions

∗∂ = ∗π(1,0)d = −iπ(1,0)d = −i∂,

∗∂ = ∗π(0,1)d = iπ(0,1)d = i∂.

Therefore, since ∂2 = ∂
2

= 0,

∆g = ∗(∂ ∗ ∂ + ∂ ∗ ∂) = i ∗ (∂∂ − ∂∂).

The result follows from the fact that ∂∂ + ∂∂ = 0. �

Finally, we define holomorphic functions on a Riemann surface and

show several equivalent characterizations.

Definition. If U is an open set in (M, g), we say that f ∈ C∞(U)

is holomorphic if ∂f
∂z̄

= 0 in U .

Lemma 2.3.4. The following are equivalent.

(a) f is holomorphic.

(b) ∂f = 0.

(c) For any conformal chart ϕα, the function f ◦ ϕ−1
α is holomor-

phic in the usual sense.

(d) One has f = u + iv where u and v are real valued harmonic

functions (so that ∆gu = ∆gv = 0) satisfying dv = ∗du.

Proof. Exercise. �

An immediate corollary is that the real and imaginary parts of a

holomorphic function in (M, g) are harmonic in (M, g).

2.4. Riemann-Roch theorem

In the solution of the inverse problem on Riemann surfaces, we will

need to construct special holomorphic functions which have prescribed

zeros and poles at certain points. One of the main tools for doing this

is a version of the Riemann-Roch theorem for surfaces with boundary.

However, for motivation we first discuss this classical result on compact
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surfaces without boundary. We then consider the Maslov index on real

line bundles over ∂M , and state the Riemann-Roch theorem which will

actually be used.

Classical Riemann-Roch. Let (M, g) be a compact, connected,

oriented 2D Riemannian manifold with no boundary. If f is a mero-

morphic function on M , we define the divisor of f to be the formal

sum

(f) :=
∑

zj zero or pole of f

ord(zj)zj

where

ord(z) :=

{
m, z is a zero of order m,

−m, z is a pole of order m.

More generally, a divisor on M is any function D : M → Z such that

D(p) 6= 0 only for finitely many points p in M . We write formally

D =
∑
p

D(p)p.

The degree of a divisor is the integer deg(D) :=
∑

pD(p).

To track the zeros and poles of meromorphic functions at prescribed

points, we introduce the vector space

L(D) := {f meromorphic in M ; (f) +D ≥ 0 or f ≡ 0}.

Thus, f ∈ L(D) means that f has a zero of order ≥ −D(p) at p when

D(p) < 0, and a pole of order ≤ D(p) at p when D(p) > 0 (and f

has no other poles). For example, to have a meromorphic function on

M with zeros at points p1, . . . , pN , one needs L(D) to be nontrivial for

some divisor D with D(p1) = . . . = D(pN) = −1.

The Riemann-Roch theorem shows, among other things, that L(D)

is always nontrivial if one allows a pole of sufficiently high order at some

point. We only state Riemann’s inequality which follows immediately

from the usual formulation of Riemann-Roch (see [5, Section 5.4] where

also a proof is given).

Theorem 2.4.1. (Riemann’s inequality) If M has genus k and if

D is a divisor on M , then

dimL(D) ≥ deg(D)− k + 1.

In particular, if deg(D) ≥ k, then L(D) is nontrivial.
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Example. Suppose we want to find a meromorphic function on

M with zeros at points p1, . . . , pN . If M has genus k, we consider the

divisor

D = −p1 − . . .− pN + (N + k)pN+1

where pN+1 is an additional point of M . Then deg(D) = k so L(D)

is nonempty by Riemann’s inequality. This shows that we can always

find a nontrivial meromorphic function with zeros at p1, . . . , pN and

with only one pole in M , but the price to pay is that this pole may be

of very high order.

Maslov index. In the previous example, on a closed Riemann

surface one obtains a meromorphic function with prescribed zeros by

allowing a pole of high order at some point p. If z are holomorphic

coordinates near p such that z(p) = 0, a typical function with pole of

high order is given by f(z) = z−N . Now, if one cuts a small set {|z| ≤ ε}
away from the surface, on the boundary {|z| = ε} the function is given

by f(εeiθ) = ε−Ne−iNθ.

The point is that near a pole of high order, a function winds many

times around the pole. Similarly, a large winding number over the

boundary will ensure the existence of holomorphic functions having

prescribed zeros in a manifold with boundary. Since the boundary

components of a Riemann surface are diffeomorphic to S1, we first

consider winding numbers on S1.

We let S1 := R/Z with π : R→ S1, x 7→ [x] the natural projection.

The proof of the next fact is left as an exercise.

Lemma 2.4.2. (Lifting maps on S1) Let f : S1 → S1 be continuous.

There is a continuous map F : R→ R, unique up to an additive integer

constant, such that π ◦ F = f ◦ π.

Definition. If f : S1 → S1 is continuous, we define the degree (or

winding number) of f by

deg(f) := F (1)− F (0)

if F is as in the preceding lemma.

Let now (M, g) be a compact oriented 2D Riemannian manifold

with boundary ∂M . We will control the boundary behavior of a func-

tion u on M by requiring that u|∂M is a section of a suitable bundle

over the boundary.
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Let E := ∂M ×C be the trivial bundle over ∂M , and let F ⊆ E be

a smooth real line bundle. This means that for any p ∈ ∂M , the fiber

Fp is a line through the origin in C. Since any such line in C is equal

to e2πiθR for some θ, one has a smooth function

hF : ∂M → S1, p 7→ e2πiθ(p)

where Fp = e2πiθ(p)R. Now ∂M is a compact oriented 1D manifold, so

by the characterization of such manifolds [6], for any component (∂M)j
there is a diffeomorphism ψj : S1 → (∂M)j.

Definition. If F ⊆ E is a real line bundle over ∂M , the Maslov

index of F is

µ(F ) :=
∑
j

deg(hF |(∂M)j ◦ ψj).

Since any two diffeomorphisms S1 → (∂M)j are equal up to a

diffeomorphism ψ : S1 → S1, the degree theory facts that deg(ψ) = 1

and deg(f ◦ g) = deg(f)deg(g) ensure that the Maslov index is well

defined.

Example. Suppose M is a Riemann surface and ψ : S1 → ∂M is

a diffeomorphism. Consider a smooth function η : [0, 1]→ R such that

η(t) = 0 for t ≤ 1/2− ε and η(t) = L for t ≥ 1/2 + ε, for an integer L.

Define a real line bundle F over ∂M by

Fψ(e2πiθ) := e2πiη(θ).

Then hF (ψ(e2πiθ)) = e2πiη(θ), and the Maslov index is

µ(F ) = deg(hF ◦ ψ) = η(1)− η(0) = L.

This example shows that the Maslov index of F may be arbitrarily

large even though F only winds in a very small subset of ∂M .

Riemann-Roch on manifolds with boundary. We are now

ready to state the result that we will use. Let E = ∂M × C be the

trivial bundle over the boundary, and let F ⊆ E be a smooth real line

bundle as above. We define the space

Hk
F (M) := {u ∈ Hk(M) ; u(p) ∈ Fp for p ∈ ∂M}

and the operator

∂F := ∂|Hk
F (M).
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The operator ∂F maps Hk
F (M) into the space Hk−1(M ;T ∗(0,1)M) of

Hk−1 sections of T ∗(0,1)M .

The following result may be found in McDuff-Salamon [9].

Theorem 2.4.3. (Riemann-Roch on manifolds with boundary) Let

(M, g) be a compact oriented Riemann surface with boundary ∂M . If

µ(F ) + 2χ(M) ≥ 0,

then ∂F : Hk
F (M)→ Hk−1(M ;T ∗(0,1)M) is surjective. Further,

dim Ker(∂F ) = χ(M) + µ(F ).
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