Inverse problems on Riemann surfaces

Exercises, 04.11.2009
(return by 04.12.2009)

The exercises can be returned to Mikko Salo.

1. Let $F: M \rightarrow N$ be smooth and let $p \in M$. Compute a coordinate expression for $F_{*} X_{p} \in T_{F(p)} N$ when $X_{p} \in T_{p} M$, and for $F^{*} \eta_{F(p)} \in T_{p}^{*} M$ when $\eta_{F(p)} \in T_{F(p)}^{*} N$.
2. Prove that the local coordinate definition of d on 1-forms is independent of choice of coordinates.
3. Let $M \subseteq \mathbf{R}^{3}$ be a smooth hypersurface which has an orientation form. Show that there is a smooth map $\hat{n}: M \rightarrow S^{2}$ such that $\hat{n}(p)$ is orthogonal to $T_{p} M$ for all p.
4. Let ω be a compactly supported 2 -form in an oriented 2 D manifold M, and define $\int_{M} \omega:=\sum_{j=1}^{m} \int_{\varphi_{j}\left(U_{j}\right)}\left(\varphi_{j}^{-1}\right)^{*}\left(\chi_{j} \omega\right)$ where $\left\{\left(U_{j}, \varphi_{j}\right)\right\}$ is a cover of $\operatorname{supp}(\omega)$ by positively oriented charts and $\left\{\chi_{j}\right\}$ is a partition of unity subordinate to $\left\{U_{j}\right\}$. Show that the definition of $\int_{M} \omega$ is independent of choice of cover and partition of unity.
5. If $p, q \in \mathbf{R}^{2}$ and g is the Euclidean metric, show that the line segment between p and q is the shortest curve joining these points and $d_{g}(p, q)=$ $|p-q|$.
6. In (M, g), show that the inner product of cotangent vectors (defined by $\left.g(\omega, \eta)=g\left(\omega^{\sharp}, \eta^{\sharp}\right)\right)$ is given in local coordinates by $g\left(\omega_{j} d x^{j}, \eta_{k} d x^{k}\right)=$ $g^{j k} \omega_{j} \eta_{k}$ where $\left(g^{j k}\right)$ is the matrix inverse of $\left(g_{j k}\right)$.
7. Show that in local coordinates, the volume form $d V_{g}$ of (M, g) is given by $\sqrt{\operatorname{det}\left(g_{j k}\right)} d x^{1} \wedge d x^{2}$.
8. If ω, η are 1 -forms show that $*(\omega \wedge * \eta)=g(\omega, \eta)$.
9. If $\Delta_{g} u:=*^{-1} d * d u$, prove that in local coordinates

$$
\Delta_{g} u=-\frac{1}{\sqrt{\operatorname{det}\left(g_{j k}\right)}} \frac{\partial}{\partial x_{j}}\left(\sqrt{\operatorname{det}\left(g_{j k}\right)} g^{j k} \frac{\partial u}{\partial x_{k}}\right) .
$$

10. If u and v are smooth functions, prove Green's formula

$$
\int_{M} u \Delta_{g} v d V=-\int_{\partial M} u \partial_{\nu} v d S+\int_{M}\langle d u, d v\rangle d V
$$

where $\partial_{\nu} v=\langle d v, \nu\rangle$ and ν is the outer unit normal.
11. Show that compositions and inverses of conformal diffeomorphisms are conformal.
12. $($ Conformal $=$ angle-preserving $)$ Prove Lemma 2.2.2 in the lectures.
13. Suppose M is a simply connected open manifold, and let ω be a smooth 1 -form in M which is closed (that is, $d \omega=0$). Prove directly that there is a smooth function u in M such that $d u=\omega$.
14. (∂ and $\bar{\partial}$ operators) Prove Lemmas 2.3.1, 2.3.2, and 2.3.4 in the lectures.
15. Let $f: S^{1} \rightarrow S^{1}$ be continuous. If $F: \mathbf{R} \rightarrow \mathbf{R}$ is continuous and $\pi \circ F=f \circ \pi$, show that F is uniquely determined modulo \mathbf{Z} (here $S^{1}=\mathbf{R} / \mathbf{Z}$ and $\pi: \mathbf{R} \rightarrow S^{1}$ is the projection).
16. Let (M, g) be a 2 D manifold with boundary, let $\Gamma_{0} \subseteq \partial M$ be a strict open subset, and let $f \in H^{k}\left(\overline{\Gamma_{0}}\right)$. Show that there is Φ such that $\bar{\partial} \Phi=0$ in M and $\operatorname{Re}(\Phi)=f$ on Γ_{0}.
17. Let $\Phi=u+i v$ where $u, v: M \rightarrow \mathbf{R}$ are smooth and $\bar{\partial} \Phi=0$. Show that p is a nondegenerate critical point of u iff p is a nondegenerate critical point of v iff $\Phi \approx a+b z^{2}$ with $b \neq 0$ in any holomorphic coordinate z near p such that $z(p)=0$.

