
3 Beyond binomial models
3.1 Poisson-distribution
Poisson-distribution is one of the most commonly used models in e.g. reliability research and epi-
demiology. It is used for describing number of 'rare events'. Poisson distribution can be derived as
a limiting case of binomial distribution Bin(Nk, rk) when Nk → ∞ and rk → 0 so that the product
Nkrk → λ, when k →∞. Then, the (Poisson) distribution of a single observation X ∈ {0, 1, 2, 3, . . .}
is

P (X | λ) =
λX

X!
e−λ.

The Poisson distribution also emerges from Poisson process (a special case of stochastic process) with
constant intensity λ. If, e.g. accidents occur with constant intensity λ per time unit, then the expected
number of accidents in a time unit is λ and the number of them (per time unit) follows Poisson distri-
bution with parameter λ, which is both the mean and the variance of Poisson distribution. Due to ad-
ditivity of Poisson variables, if X ∼ Poisson(λ1) and Y ∼ Poisson(λ2), then X +Y ∼ Poisson(λ1 +λ2).
Likewise, the number of events during time T has Poisson distribution Poisson(λT ). In a Poisson
process with constant intensity λ, the waiting time until next event is exponentially distributed with
mean 1/λ, regardless of the past history, (if λ given).

As a conjugate distribution, the prior of λ is Gamma(α, β)-density

π(λ) =
βα

Γ(α)
λα−1e−βλ,

which leads to the posterior:

π(λ | X) ∝ λX

X!
e−λ βα

Γ(α)
λα−1e−βλ,

which is, up to a normalizing constant, the same as

λx+α−1e−(1+β)λ.

In other words: Gamma(X + α, 1 + β)-density. The posterior mean is thus

E(λ | X, α, β) =
X + α

1 + β
=

1

1 + β
X +

β

1 + β

α

β

which is a weighted average of prior mean α/β and X. If we have a series of observations X1, . . . , Xn,
an analogous result can be derived.

3.1.1 Example: Asthma mortality
Epidemiological Example from Gelman [4]: Poisson model parameterized in terms of rate and exposure:

Xi ∼ Poisson(Eiθ)
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where Xi is the number of e.g. disease cases in a group with exposure Ei and θ is the unknown
parameter of interest, the 'underlying rate'. The probability of the data X = (X1, . . . , XN) is

π(X | θ) ∝ θ
∑N

i=1
Xi exp((−

N∑

i=1

Xi)θ)

With the conjugate prior Gamma(α, β), the posterior is

π(θ | X) = Gamma(α +
N∑

i=1

Xi, β +
N∑

i=1

Ei)

Assume there were X = 3 deaths due to asthma in a city during a year, out of a population of 200000.
Hence the crude estimate per 100000 per year would be 1.5 cases. The model for the observed count
could be

X ∼ Poisson(2θ) = Poisson(Eθ)

where θ represents the 'underlying mortality rate' per 100000 per year, and E 'exposure'. To compute
the posterior π(θ | X), we choose a conjugate prior π(θ) = Gamma(α, β) by choosing (α, β) so that
the prior represents reasonable background information. According to literature, the typical asthma
mortality rate in Western countries would be around 0.6 per 100000. It is also known that values
above 1.5 are rare. Hence, Gamma(3, 5) prior has mean 0.6, standard deviation 0.35, and this prior
also has P (θ < 1.44) = 97.5%. All this seems to ful�ll both prior speci�cations. (The prior parameters
can be chosen by trial and error). The posterior distribution is then Gamma(6, 7), which has mean
0.86. That is substantial shrinkage towards prior distribution.

3.2 Exponential distribution
Assume a single observation X ∈ IR+ (typical example: waiting times, time of next event) for which
the conditional distribution is exponential:

π(X | θ) = θ exp(−Xθ).

As a conjugate prior of θ, we choose Gamma(α, β), so that the posterior π(θ | X) becomes Gamma(α+
1, β + X). The posterior mean is

E(θ | X, α, β) =
α + 1

β + X

With a set of observations X1, . . . , Xn (mean X̄ =
∑n

i=1 Xi/n) we get

π(X | θ) = θn exp(−nX̄θ)

which leads to the posterior Gamma(α + n, β + nX̄), so that the Gamma(α, β) prior can be thought
as equivalent of α− 1 prior observations X0

1 , . . . , X0
α−1 for which the sum ∑

X0
i equals to β.
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3.2.1 Censored data
In survival analysis and reliability applications, it is common that the 'failure times' (times of death,
infections, illness, etc.) are exactly known for only some individuals. For others, the time can be
censored, which means that we only know that the event has not happened before some known time
point. (This is also information!). Often, the censoring time can be the ending time of the follow-up
period, or ending time of the study, T . The probability for such event is the survival probability:
P (Xi > T | θ) = 1 − P (Xi < T | θ) = 1 − F (T | θ) = exp(−θT ) = S(T | θ). The conditional
probability of the whole data is then of the form

P (X | θ) =
k∏

i=1

θ exp(−θXi)× S(T | θ)n−k = θk exp(−θ[
k∑

i=1

Xi + (n− k)T ]).

The posterior is then Gamma(α + k, β +
∑k

i=1 Xi + (n − k)T ). More generally, we may know that
for some individuals the event occurred before some given time, or between two given times. In each
case, this information should be included by writing the corresponding conditional probability. (This
is sometimes called as the 'full likelihood'). For example, if some events are only known to have been
before time T1 and some are known to be after time T2, and for the rest we know the exact time, then
the full likelihood would be of this form

P (X | θ) = [F (T1 | θ)]
∑

1{i∈E1} × [S(T2 | θ)]
∑

1{i∈E2} × ∏

i∈E3

θ exp(−θXi).

Note: by using the cumulative probability function F , probability expressions for all di�erent situa-
tions of censoring might be written.

Note: when the event time is known, the conditional probability of this observation is P (Xi | θ) =
θ exp(−θXi), but when the censoring time is known, the observation can be interpreted as a Bernoulli
variable (indicator variable!) that was one:

Yi =

{
0 if Xi < T
1 if Xi > T

so that P (Yi = 1 | θ) = S(T | θ).

3.3 Normal-distribution
The normal, or Gaussian, distribution is the most widely used model and has connections to many
other models and their asymptotic approximations. For an example of bayesian inference, consider
that a measurement, e.g. temperature, is measured from N items, resulting to X1, . . . , XN as the
observed temperatures. These are assumed to be normally distributed with mean µ and variance σ2,
representing the in�nite population from which the items are drawn. We then have two unknown
parameters in our model. Consider �rst estimating one of them, assuming the other as 'known', and
�nally estimating both.

3.3.1 Estimating the mean
Assume that variance σ2 is known, but mean µ unknown. We would like to estimate the mean, repre-
senting the average temperature in an 'in�nite' population of items. Consider �rst a single observation.
The conditional density is
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π(Xi | µ, σ) = N(Xi | µ, σ2) = N(Xi | µ, τ) ∝ exp(−0.5τ(Xi − µ)2).

where τ = 1/σ2 is the precision. (Gaussian model is parameterized using precision in WinBUGS and
often in bayesian notation. Be careful to note which notation is used!!). Before calculating posterior
of µ, we need to choose the prior. As we know from physics, there is absolute minimum temperature,
but for this example we assume that our measurements are well beyond absolute minimum. Therefore,
for all practical purposes it is acceptable to consider the whole set IR of real numbers as the range of
possible measurement values. It is convenient to use a conjugate prior density, N(µ0, τ0):

π(µ) ∝ exp(−0.5τ0(µ− µ0)
2).

With the single measurement, the posterior density would be of the form

π(µ | Xi, τ, µ0, τ0) ∝ exp(−0.5(τ0(µ− µ0)
2 + τ(Xi − µ)2)),

and this is the same as

N
(n0µ0 + Xi

n0 + 1
,

σ2

n0 + 1

)
,

where n0 = τ0/τ can be interpreted as a priori sample size. The normal density is obtained from the
bayes formula by using the technique of completing a square. (See [5] BSM p. 62). The posterior
mean can be written as

wµ0 + (1− w)Xi,

where the weight is w = τ0/(τ0 + τ). The probability of the whole data set can be written using the
average X̄ =

∑
Xi/N :

π(X̄ | µ, σ) = N(X̄ | µ, σ2/N) = N(X̄ | µ, Nτ).

By using bayes formula, this leads to the posterior

N
(n0µ0 + X̄

n0 + 1
,

σ2/N

n0 + 1

)
,

with n0 = τ0/(Nτ). The posterior mean and variance can also be written in this form:

E(µ | X) =

µ0

σ2
0

+ NX̄
σ2

1
σ2
0

+ N
σ2

V (µ | X) =
1

1
σ2
0

+ N
σ2

.

Improper prior. When the prior precision approaches zero, the prior density becomes �at and
improper density, π(µ) ∝ 1, but the posterior density still exists, becoming N(X̄, σ2/N). The posterior
mean then equals sample mean, and posterior variance equals the variance of the sample average. This
is a perfect mirror image of the non-bayesian approach where a sampling distribution is derived for a
statistics, such as sample mean, whereas the unknown population mean µ is considered constant. In
bayesian inference µ is unknown, therefore random, but the data X̄ is known, therefore constant:

X̄ ∼ N(µ, σ2/N) µ ∼ N(X̄, σ2/N)
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3.3.2 Estimating the variance
It is next assumed that the mean µ is known, and we would like to estimate the unknown variance
σ2, (or precision τ). It is not sensible to estimate variance unless there are several (at least more than
one) observations. Therefore, we assume that we have some number of observations X = X1, . . . , XN .
We can start again with the conditional density of all observations:

π(X | µ, σ) ∝ σ−N exp(− 1

2σ2

N∑

i

(Xi − µ)2).

= (σ2)−N/2 exp(− N

2σ2
ν)

where we have used the notation:
ν =

1

N

N∑

i

(Xi − µ)2.

Since τ is unknown we must choose a prior for it. Following the presentation in Gelman et al [4], a
convenient choice for the prior π(σ2) is a Scaled Inverse χ2 distribution. The density function is:

π(σ2 | ν0, σ
2
0) =

(ν0/2)ν0/2

Γ(ν0/2)
σν0

0 (σ2)−(ν0/2+1) exp(−ν0σ
2
0/2σ

2)

It has two parameters, ν0, σ
2
0, and it has some connections to other densities, which provide alternative

ways in constructing the prior:

σ2 ∼ Scaled Inv-χ2(ν0, σ
2
0) = Inv-Γ(

ν0

2
,
ν0σ

2
0

2
) ⇐⇒ τ =

1

σ2
∼ Γ(

ν0

2
,
ν0σ

2
0

2
)

θ ∼ χ2
ν0
⇐⇒ ν0σ

2
0

θ
∼ Scaled Inv-χ2(ν0, σ

2
0)

Using the Scaled Inverse-χ2 prior, the posterior is of the form:

π(σ2 | X) ∝ π(σ2)π(X | σ2)

∝ (σ2)−(ν0/2+1) exp(−ν0σ
2
0

2σ2
)× (σ2)−N/2 exp(−Nν

2σ2
)

= (σ2)−((ν0+N)/2+1) exp(−ν0σ
2
0 + Nν

2σ2
)

Which is the Scaled Inverse-χ2 density:

π(σ2 | X, µ) = Scaled Inv-χ2(ν0 + N,
ν0σ

2
0 + Nν

ν0 + N
).

Note that the prior can be thought of as ν0 observations with average squared deviation σ2
0.

Improper prior. When the ν0 parameter of the prior is set to zero, we obtain an improper prior

π(σ2) ∝ 1

σ2
,

which does not integrate to one. Nevertheless, the posterior density still exists, and it is Scaled Inv-
χ2(N, ν) where ν = 1

n

∑
(Xi−µ)2. The prior is equivalent to the uniform improper prior π(log(σ)) ∝ 1.
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3.4 Multiparameter models
In nearly all inference problems there is more than one unknown quantity. Often, only one of them is
of interest and the others are nuisance parameters. Assume there are two unknown parameters θ1, θ2

(both can be vectors) and some set of data X. The posterior density is

π(θ1, θ2 | X) ∝ π(X | θ1, θ2)π(θ1, θ2),

and the marginal density of θ1 is

π(θ1 | X) =
∫

π(θ1, θ2 | X)dθ2,

which can also be calculated as

π(θ1 | X) =
∫

π(θ1 | θ2, X)π(θ2 | X)dθ2.

This integral is usually not computed directly, but it shows an important structure that is used when
hierarchical models are constructed, and also when MCMC algorithms are implemented.

Note: the unknown parameters θ can be 'unknown model parameters', or missing data variables, or
variables to be predicted, or unobservable latent (hidden) variables. They are all simply unknown,
and in bayesian inference they are all treated as unknown quantities, so that we aim to compute the
posterior:

P ('all unknowns' | 'all known things')

Note: it is di�cult to visualize a posterior density for three or more unknown quantities. Therefore,
we often plot one-dimensional marginal distributions, or two-dimensional marginal distributions for
selected quantities of interest. This is always based on the full posterior density that can be multidi-
mensional.

3.4.1 Multinomial model, unknown r1, . . . , rk

Binomial model can be generalized to multinomial model by considering outcomes of several types
instead of two types. For example, in a large bag there are balls of k di�erent colours. The proportions
of these are r = r1, . . . , rk. A sample of N balls is drawn, and we observe the number of balls of each
colour X1, . . . , Xk. The goal is now to solve the posterior density:

π(r1, . . . , rk | X1, . . . , Xk).

Note that the unknown proportions have to sum to one: ∑
ri = 1. The conditional distribution of the

data is now

P (X1, . . . , Xk | r1, . . . , rk, N) =

(
N

X1, . . . , Xk

)
rX1
1 × · · · × rXk

k .

The conjugate prior density is Dir(α) = Dirichlet(α1, . . . , αk):

π(r1, . . . , rk) =
Γ(α1, . . . , αk)

Γ(α1) · · ·Γ(αk)
rα1−1
1 × · · · × rαk−1

k ,
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so that the posterior density will also be Dirichlet, with parameters (α1 + X1, . . . , αk + Xk):

∝ rα1+X1−1
1 × · · · × rαk+Xk−1

k .

Again, prior parameters α1, . . . , αk can be interpreted to represent 'prior data' so that the 'prior
sample size' is ∑

αi. A usual uninformative prior choice is Dir(1, . . . , 1), which is the generalization of
Beta(1, 1). The posterior means can be written as weighted mean of prior and data proportions

E(ri | X, α) =
αi + Xi∑
(αi + Xi)

=

∑
αi∑

(Xi + αi)

αi∑
αi

+

∑
Xi∑

(Xi + αi)

Xi∑
Xi

Note also that if r ∼ Dir(α), then the marginal distribution of each rj is Beta(αj,
∑

i αi − αj), with
variance αj(

∑
i αi − αj)/((

∑
i αi)

2(
∑

αi + 1)). To simplify notations, write A =
∑

i αi. Then the
marginal variance may be written as αj

A
(1− αj

A
)/(A + 1).

If dirichlet distribution is not found in a software, the following result can be useful:

Zi ∼ Gamma(αi, 1) ⇒ (
Z1∑
Zi

, . . . ,
Zk∑
Zi

) ∼ Dir(α1, . . . , αk).

Congdon, BSM, p. 38, shows a possible method for constructing an informative prior based on 'expert
opinion'. It starts by picking up two estimates for the parameters. Denote them as p1, . . . , pk and
q1, . . . , qk. Their di�erences are di = pi − qi and means are ηi = (pi + qi)/2. The expected value of the
sum of squared di�erences can be written as

E(
∑

(pi − qi)
2) =

∑
E(p2

i )− 2
∑

E(pi)E(qi) +
∑

E(q2
i )

=
∑

(2E(p2
i )− 2E(pi)

2)
= 2

∑
V (pi)

= 2
∑

ηi(1− ηi)/(A + 1)
= 2

∑
(ηi − η2

i )/(A + 1)
= 2(1−∑

η2
i )/(A + 1).

This expected value and the prior 'observed' sum of squared di�erences of the two estimates are
marked as equal. Then, using the 'observed' prior estimate ηi, we can solve the prior sample size A.
The parameters of the Dir-prior are �nally obtained as (Aη1, . . . , Aηk).

3.4.2 Normal model, unknown µ and σ2

The goal is to solve the posterior (joint) density π(µ, σ2 | X), i.e. both parameters are unknown. The
prior density is assumed improper and uninformative so that

π(µ, σ2) ∝ 1

σ2
.

This prior is the same as an improper uniform prior

π(µ, log(σ)) ∝ 1.

First, there's some preliminary math that will be needed when solving the posterior density.
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n∑

i

(Xi − µ)2 =
n∑

i

(Xi − X̄)2 + n(X̄ − µ)2

Proof:
n∑

i

(Xi − µ)2 =
n∑

i

(X2
i − 2Xiµ + µ2)

=
n∑

i

(X2
i − 2Xiµ + µ2−X̄2 + X̄2 − 2XiX̄ + 2XiX̄)

=
n∑

i

(Xi − X̄)2 +
n∑

i

(µ2 − 2Xiµ− X̄2 + 2XiX̄)

=
n∑

i

(Xi − X̄)2 + n(µ2 − 2X̄µ− X̄2 + 2X̄X̄) =
n∑

i

(Xi − X̄)2 + n(X̄ − µ)2.

Then, using this 'trick', the posterior density can be solved as

π(µ, σ | X) ∝ σ−n−2 exp(− 1

2σ2

n∑

i

(Xi − µ)2)

= σ−n−2 exp(− 1

2σ2
[

n∑

i

(Xi − X̄)2 + n(X̄ − µ)2])

= σ−n−2 exp(− 1

2σ2
[(n− 1)s2 + n(X̄ − µ)2]),

where s2 = 1
n−1

∑
(Xi − X̄)2.

The posterior density is �nally solved by using factorization:

π(µ, σ2 | X) = π(µ | σ2, X)π(σ2 | X).

We already know from earlier results that π(µ | σ2, X) = N(X̄, σ2/n). Therefore, we only need to
�nd out what the marginal density π(σ2 | Y ) is. This can be calculated from the joint density by
integrating over µ:

π(σ2 | X) ∝
∫ ∞

−∞
σ−n−2 exp(− 1

2σ2
[(n− 1)s2 + n(X̄ − µ)2])dµ

= σ−n−2 exp(− 1

2σ2
(n− 1)s2)

∫ ∞

−∞
exp(− n

2σ2
(X̄ − µ)2)dµ

= σ−n−2 exp(− 1

2σ2
(n− 1)s2)×

√
2πσ2/n

∝ (σ2)−(n+1)/2 exp(−(n− 1)s2

2σ2
).

In other words: π(σ2 | X) = Scaled Inv-χ2(n− 1, s2).
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Compare this with the earlier result where µ was assumed to be known.

The full joint density can thus be computed as a product of two known densities π(σ2 | X) and
π(µ | σ2, X). This is also convenient for Monte Carlo implementations, because we can then simulate
both unknown parameters from these known distributions. This example happens to be such that
it is also possible to solve the marginal posterior density of the mean π(µ | X). This follows from
calculating the integral:

π(µ | X) =
∫ ∞

0
π(µ, σ2 | X)dσ2.

The details are given in Gelman et al, [4]. As a result, the marginal posterior is found to be a
t-distribution so that

π
(µ− X̄

s/
√

n
| X

)
= tn−1.

3.5 Comment
The above posterior distributions were obtained using conjugate priors. Conjugate priors are conve-
nient, because (1) the posterior density is among well known standard densities (exact solution exists),
(2) the prior can be thought of as some amount of 'prior data'. On the other hand, conjugate priors
may not be �exible enough to represent more complicated prior information. But if non-conjugate
priors are used, then the posterior does not take the form of any standard distribution and we must
use numerical methods for all computations. Conjugate priors can only be used for a limited number
of problems. They can be useful as a �rst approach. Some examples are given in Table (1):

Data distribution Prior
Binomial(n, p), n known p ∼ Beta
Multinomial(n, p1, . . . , pk), n known p1, . . . , pk ∼ Dirichlet
Poisson(λ) λ ∼ Gamma
N(µ, σ2), σ known µ ∼ N
N(µ, σ2), µ known 1

σ2 ∼ Gamma
MN((µ1, . . . , µk), Σ), µ known Σ−1 ∼ Wishart
Gamma(α, β), α known β ∼ Gamma
Beta(α, β), β known α ∼ Gamma

Table 1: Some conjugate models.
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