
Department of Mathematics and Statistics
Introduction to Bayesian methods and WinBUGS
Exam 13.10.2009

1. (6 points). Assume binary variables X1 and X2 are part of an in�nite exchangeable sequence. Prove
mathematically that P (X2 = 1 | X1 = 1) > P (X2 = 1).

P (X2 = 1, X1 = 1) =
∫ 1

0
θ2π(θ)dθ = E(θ2) = Var(θ) + E(θ)2

P (X1 = 1) = P (X2 = 1) =
∫ 1

0
θπ(θ)dθ = E(θ)

P (X2 = 1 | X1 = 1) =
P (X2 = 1, X1 = 1)

P (X1 = 1)
=

Var(θ) + E(θ)2

E(θ)
>

E(θ)2

E(θ)
= E(θ) = P (X2 = 1)

This shows that learning what the result from the 1st experiment was, leads to higher probability of
the same result in the 2nd. (Assuming θ is not known, i.e. all that is assumed is prior exchangeability).

2. Explain the meaning of the following terms (1 point each):
Improper prior distribution
-A prior 'distribution' with an in�nite integral, so that it cannot be normalized to make a proper
distribution.
Marginal posterior distribution
-A lower dimensional distribution that is obtained from the full posterior distribution by integration.
e.g. ∫

π(x, y | data)dy = π(x | data)
Exchangeability (�nite or in�nite)
-A sequence of variables is said to be exchangeable, if the permutation of the variable indices does not
a�ect the probability statement. e.g. �nite exchangeability: P (x1, . . . , xn) = P (xr1 , . . . , xrn) for all
permutations r.
Full conditional distribution
-This is needed in Gibbs-sampling algorithms. Assume the full distribution is d-dimensional π(x1, . . . , xd).
The full conditional, say for x1, is π(x1 | x2, . . . , xd), and likewise for all other components.
DAG
-A graphical (acyclic) representation of all conditional distributions in a Bayesian model, that will de-
�ne (together with priors) all that is needed to compute a complete posterior distribution. (Directed
Acyclic Graph).
Realized residual (bayesian)
-The realized residual for data point yi is yi−E(yi | θ) where the expected value of yi depends on the
unknow model parameter θ for which the posterior is computed. Hence, for �xed data y, the realized
residual will have a distribution that is implied by the distribution of θ. (In contrast to the 'classical'
or �tted residual that is based on the (�xed) estimate θ̂).

3. Assume that the herd size distribution f (probability density) is a mixture distribution f =
αf1 + (1 − α)f2 where the expected value and variance of the component distribution fj are µj and
σ2

j . This can be e.g. a mixture of 'small' and 'large' herds so that the expected proportion of small
herds is α. In other words, a randomly chosen herd has probability α to be 'small' in which case its
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size follows distribution f1. Otherwise, with probability 1−α, its size follows distribution f2. Show that:

(A), (2 points): the expected number of animals within the chosen herd is then µ = αµ1+(1−α)µ2, and:

(B), (2 points): the variance of the number is σ2 = α(σ2
1 +µ2

1)+ (1−α)(σ2
2 +µ2

2)− (αµ1 +(1−α)µ2)
2.

(C), (2 points): assume that all parameters in these distributions would be known, and fj = Normal(µj, σ
2
j ),

and that a herd is observed to have size X. Write the probability that it is a 'small' herd and explain
this graphically.

Note: density function of a normal(µ, σ2) density: 1√
2πσ

exp(−0.5(x− µ)2/σ2)

and: V (X) = E((X − E(X))2).

(A,B): we calculate the mean and variance for the number, X, where this number X is a random
variable from a mixture distribution:

µ =
∫ ∞

0
xf(x)dx =

∫ ∞

0
x(αf1(x)+(1−α)f2(x))dx =

∫ ∞

0
(αxf1(x)+(1−α)xf2(x))dx = αµ1+(1−α)µ2.

(1)
σ2 = E(x2)− (E(x))2 = E(x2)− µ2. (2)

To compute this we need to solve E(x2):

E(x2) =
∫ ∞

0
x2f(x)dx

=
∫ ∞

0
x2(αf1(x) + (1− α)f2(x)) dy

=
∫ ∞

0
αx2f1(x) + (1− α)x2f2(x) dy

= αE1(x
2) + (1− α)E2(x

2)

= α(σ2
1 + µ2

1) + (1− α)(σ2
2 + µ2

2). (because σ2
i = Ei(x

2)− µ2
i )

Therefore, by substituting back to equation (2) we obtain:

σ2 = E(x2)− µ2

= E(x2)− (αµ1 + (1− α)µ2)
2

= α(σ2
1 + µ2

1) + (1− α)(σ2
2 + µ2

2)− (αµ1 + (1− α)µ2)
2.

(C): the probability is

P (small | X) =
N(X | small)P (small)

N(X | small)P (small) + N(X | large)P (large)

where P (small) = α and P (X | ·) the normal density function (either for 'small' or 'large'). Graphi-
cally:
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Figure: Mixture density (dotted line) and its two component densities multiplied by their weights
(αf1, (1 − α)f2). Assume observation X = 8. The vertical line shows the probability of either class.
The stick-length under the mark divided by the whole stick-length is the probability of 'small' class.
This is the same as what is mathematically written in the above equation.

4. Normal model Xi ∼ N(µ, σ2), with i = 1, . . . , n observations. Assume σ2 is known, µ is unknown,
with prior µ ∼ N(µ0, σ

2
0). Assume that σ2

0 is very large (≈ ∞).

(A, 3 points): what is posterior distribution π(µ | X1, . . . , Xn, σ
2, µ0, σ

2
0) approximately? What is its

mean and variance?

Approximately, the posterior is the same as with improper uniform prior, resulting to: N(X̄,σ2/N),
with mean X̄ and variance σ2/N . This can also be derived from the posterior mean and variance
(remember what they were, or calculate again) by taking the limit σ0 →∞. (See lecture notes).

(B, 3 points): what is (approximately) posterior predictive distribution π(X∗ | X1, . . . , Xn, σ2, µ0, σ
2
0)

of a new observation X∗? What is its mean and variance?

The posterior predictive distribution results from the model N(µ, σ2) where the uncertainty about µ
is described by the posterior distribution N(X̄, σ2/N). That is: π(X∗ | X) =

∫∞
−∞ π(X∗ | µ, σ)π(µ |

X̄, σ2/N)dµ. The predictive distribution is again a normal distribution. It su�ces to recall this
from the lectures. Alternatively, one could �nd this result as follows: X∗ = (X∗ − µ) + µ, so
that π(X∗ − µ | µ, σ, X̄) = N(0, σ2) and π(µ | σ, X̄) = N(X̄, σ2/N). Now (X∗ − µ) and µ
are independent, given X̄. Hence the mean E(X∗) = E(X∗ − µ) + E(µ) = 0 + X̄ and variance
V (X∗) = V (X∗ − µ) + V (µ) = σ2 + σ2/N . Thus the posterior predictive distribution is normal with
mean X̄ and variance σ2+σ2/N . Moreover, it would be possible to use here the theorem of conditional
expectations and variances, E(X∗) = E(E(X∗ | µ)) and V (X∗) = V (E(X∗ | µ)) + E(V (X∗ | σ)), to
�nd out the mean and variance.
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Note: density function of a normal(µ, σ2) density: 1√
2πσ

exp(−0.5(x− µ)2/σ2)

5. (4+2 points):
(A, 4 points): assume the model is Xi ∼ Bernoulli(p) with prior p ∼ U(0, 1). Write a WinBUGS code
for assessing the model �t, P (T (xpred) > T (x) | x), based on a discrepancy T that counts the number of
occurrences of three consecutive results that have the same value (either 000, or 111). Assume the data:

x=c(1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0)

It was not required that the sequences should be distinct; they could be overlapping. (Then '0000'
counts as two '000's). The solution for the latter is given below. Essentially, whatever the chosen
counting rule, the same rule should be applied to the actual data as well as to the simulated replicate
data.

model{
p ~ dunif(0,1)
for(i in 1:n){ x[i] ~ dbern(p); xrep[i]~ dbern(p) }
for(i in 3:n){
test[i-2] <- equals(xrep[i],xrep[i-1])*equals(xrep[i-1],xrep[i-2])
}
T <- sum(test[1:n-2])
P <- 1-step(Tobs-T) # compare with the observed
}
list(n=20,Tobs=12,x=c(1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0))

(B, 2 points): Assume a is some �xed value and U is a variable for which a distribution will be com-
puted in WinBUGS. We want to calculate the following probabilities: P (U ≤ a), P (U < a), P (U ≥ a),
P (U > a). What lines are needed to be written in WinBUGS to simulate these probabilities?

Step-function gives 1 when the argument is positive or zero. It gives 0 when the argument is negative.

P1 <- step(a-U)
P2 <- 1-step(U-a)
P3 <- step(U-a)
P4 <- 1-step(a-U)
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