Elements of Set Theory, Fall 2009

Exercise 8

20.11.2009

- 1. Let κ , λ and μ be cardinal numbers. Prove:
 - (a) $\kappa \leq \lambda \Rightarrow \kappa + \mu \leq \lambda + \mu$,
 - (b) $\kappa \leq \lambda \Rightarrow \kappa \cdot \mu \leq \lambda \cdot \mu$,
 - (c) $\kappa \leq \lambda \Rightarrow \kappa^{\mu} \leq \lambda^{\mu}$,
 - (d) $\kappa \leq \lambda \Rightarrow \mu^{\kappa} \leq \mu^{\lambda}$, if not both κ and μ equal 0.
- 2. Give counterexamples to show that we cannot replace \leq by < in the above theorem, without using 0. *Hint:* Natural numbers alone cannot give us counterexamples, so consider also \aleph_0 and 2^{\aleph_0} .
- 3. Show that the following definition gives us a one-to-one function G from ${}^{\omega}\{0,2\}$ to \mathbb{R} . For $f \in {}^{\omega}\{0,2\}$, let

$$G(f) = \sum_{n \in \omega} \frac{f(n)}{3^{n+1}}$$

Here $\sum_{n \in \omega} \frac{f(n)}{3^{n+1}}$ is just the least upper bound for the set $\{\frac{f(0)}{3} + \ldots + \frac{f(n)}{3^{n+1}} \mid n \in \omega\}$. You have to show that G is well defined by showing that the least upper bounds exist, and that G is one-to-one.

Note: ${}^{\omega}\{0,2\}$ is of course equinumerous with ${}^{\omega}2$, so this gives us the result $2^{\aleph_0} \leq |\mathbb{R}|$. The reason for considering ${}^{\omega}\{0,2\}$ is that we get a one-to-one function. You might want to draw a picture!

4. Use the following strategy to give an alternative proof for the fact that \mathbb{R} is not equinumerous with ω . Suppose towards a contradiction that $F: \omega \to \mathbb{R}$ was onto. Define recursively reals a_n and b_n , for $n \in \omega$, as follows: $a_0 < F(0)$, b_0 is F(m)with the least m such that $a_0 < F(m) < F(0)$, a_{n+1} is F(k) with the least k such that $a_n < F(k) < b_n$, and b_{n+1} is F(l) with the least l such that $a_{n+1} < F(l) < b_n$. Derive a contradiction by considering the least upper bound for the set $\{a_n \mid n \in \omega\}$.