Elements of Set Theory, Fall 2009

Exercise 7

13.11.2009

- 1. Show that if x and y are real numbers with $x <_{\mathbb{R}} y$, then there is a rational number r such that $x <_{\mathbb{R}} r_{\mathbb{R}} <_{\mathbb{R}} y$.
- 2. Show that the union of two finite sets is finite (directly, without using Theorem 6J of Enderton's.)
- 3. Show that the equation $f(m,n) = 2^m(2n+1) 1$ defines a one-to-one function from $\omega \times \omega$ onto ω .
- 4. Let K, L and M be pairwise disjoint sets. Prove:
 - $K \times (L \cup M) \approx (K \times L) \cup (K \times M),$
 - $^{M}(K \times L) \approx {}^{M}K \times {}^{M}L.$
- 5. Suppose that κ is a nonzero cardinal number. Show that there is no set to which every set of cardinality κ belongs.
- 6. Here + and \cdot refer to the addition and multiplication of cardinal numbers, respectively. Recall that $\aleph_0 = |\omega|$. Prove:
 - (a) $n + \aleph_0 = \aleph_0$ for every $n \in \omega$,
 - (b) $n \cdot \aleph_0 = \aleph_0$ for every $n \in \omega$,
 - (c) $\aleph_0 + \aleph_0 = \aleph_0$,
 - (d) $\aleph_0 \cdot \aleph_0 = \aleph_0$.