Elements of Set Theory, Fall 2009

Exercise 7

13.11.2009

1. Show that if x and y are real numbers with $x<\mathbb{R} y$, then there is a rational number r such that $x<_{\mathbb{R}} r_{\mathbb{R}}<_{\mathbb{R}} y$.
2. Show that the union of two finite sets is finite (directly, without using Theorem 6J of Enderton's.)
3. Show that the equation $f(m, n)=2^{m}(2 n+1)-1$ defines a one-to-one function from $\omega \times \omega$ onto ω.
4. Let K, L and M be pairwise disjoint sets. Prove:

- $K \times(L \cup M) \approx(K \times L) \cup(K \times M)$,
- ${ }^{M}(K \times L) \approx{ }^{M} K \times{ }^{M} L$.

5. Suppose that κ is a nonzero cardinal number. Show that there is no set to which every set of cardinality κ belongs.
6. Here + and \cdot refer to the addition and multiplication of cardinal numbers, respectively. Recall that $\aleph_{0}=|\omega|$. Prove:
(a) $n+\aleph_{0}=\aleph_{0}$ for every $n \in \omega$,
(b) $n \cdot \aleph_{0}=\aleph_{0}$ for every $n \in \omega$,
(c) $\aleph_{0}+\aleph_{0}=\aleph_{0}$,
(d) $\aleph_{0} \cdot \aleph_{0}=\aleph_{0}$.
