Elements of Set Theory, Fall 2009

Exercise 6

6.11.2009

- 1. Is there a function $F : \mathbb{Z} \to \mathbb{Z}$ satisfying $F([\langle m, n \rangle]) = [\langle m, m \rangle]$? How about $G : \mathbb{Q} \to \mathbb{Q}$ satisfying $G([\langle a, b \rangle]) = [\langle a+b, b \rangle]$? If yes, can you explicate the functions in terms of arithmetic in \mathbb{Z} and \mathbb{Q} , respectively?
- 2. Show that for any $r \in \mathbb{Q}$,

$$r <_{\mathbb{Q}} 0_{\mathbb{Q}}$$
 iff $0_{\mathbb{Q}} <_{\mathbb{Q}} -r$.

- 3. Show that the ordering of rationals is *dense*: For any $p, q \in \mathbb{Q}$ with $p <_{\mathbb{Q}} q$, there is an $r \in \mathbb{Q}$ with $p <_{\mathbb{Q}} r <_{\mathbb{Q}} q$.
- 4. Define the *absolute value* of a real number x by

$$||x|| = x \cup -x.$$

Show that $||x|| \in \mathbb{R}$ and that $||x|| \ge_{\mathbb{R}} 0_{\mathbb{R}}$ for every $x \in \mathbb{R}$.

- 5. Assume that p is a positive rational number. Show that for any real number x there is a rational number $q \in x$ such that $p + q \notin x$.
- 6. The multiplication of real numbers is defined as follows:
 - (a) If both x and y are nonnegative, then

 $x \cdot_{\mathbb{R}} y = 0_{\mathbb{R}} \cup \{ rs \mid 0 \le r \in x \text{ and } 0 \le s \in y \}.$

- (b) If both x and y are negative, then $x \cdot_{\mathbb{R}} y = ||x|| \cdot_{\mathbb{R}} ||y||$.
- (c) If one of x and y is negative and the other is nonnegative, then $x \cdot_{\mathbb{R}} y = -(||x|| \cdot_{\mathbb{R}} ||y||)$.

Show that $x \cdot_{\mathbb{R}} y \in \mathbb{R}$ for every $x, y \in \mathbb{R}$. (Note that by the definition it is enough to check this only for nonnegative x and y.)