Elements of Set Theory, Fall 2009

Exercise 5

23.10.2009

1. Show that even though for given sets A and B, the collection of functions from A to B is a set, the collection of all functions is not a set.
2. Is there a function $F: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfying the equation

$$
F([\langle m, n\rangle])=[\langle m+n, n\rangle] ?
$$

3. Suppose that R is a binary relation on a set A, and \sim is an equivalence relation on A. Define that R is compatible with \sim if whenever $x \sim x^{\prime}, y \sim y^{\prime}$, and $x R y$, also $x^{\prime} R y^{\prime}$. Prove that there exists a relation \bar{R} on $(A / \sim) \times(A / \sim)$ satisfying

$$
[x] \bar{R}[y] \Leftrightarrow x R y
$$

if and only if R is compatible with \sim.
Note: If A has at least 2 elements, we can infer this result from the analogous result for functions, as we did in the lectures.
4. Give an example of a set A, an equivalence relation \sim on A, and a binary relation R on A such that R is not compatible with \sim. Explicate why there is no relation \bar{R} as in the exercise above. Suggestion: Let for example $A=\{0,1\}, \sim=A \times A$, and $R=\{\langle 0,1\rangle\}$.
5. Verify that the multiplication of rationals is associative and commutative:

$$
\begin{gathered}
(p \cdot \mathbb{Q} q) \cdot \mathbb{Q} r=p \cdot \mathbb{Q}(q \cdot \mathbb{Q} r), \\
p \cdot \mathbb{Q} q=q \cdot \mathbb{Q} p
\end{gathered}
$$

for every $p, q, r \in \mathbb{Q}$.
6. Give a direct proof (not using Theorem 5QF of Enderton's) that if r and s are nonzero rational numbers, then $r \cdot \mathbb{Q} s$ is also nonzero.

