Elements of Set Theory, Fall 2009

Exercise 4

16.10.2009

1. Call a natural number even if it has the form $2 \cdot m$ for some m, and odd if it has the form $(2 \cdot p)+1$ for some p. Show that each natural number is either even or odd but never both.
2. Prove that ω is a transitive set using the well-ordering of ω.
3. Suppose that A is a transitive set. Show that if \in well-orders A, i.e., the relation $\{\langle x, y\rangle \in A \times A \mid x \in y\}$ is a well-ordering on A, then \in well-orders A_{+}also.

In the following exercise we begin using the obvious notational convention of writing $F(x, y)$ instead of $F(\langle x, y\rangle)$. More generally we write $F\left(x_{0}, \ldots, x_{n-1}\right)$ instead of $F\left(\left\langle x_{0}, \ldots, x_{n-1}\right\rangle\right)$ when $F: A^{n} \rightarrow B$.
4. Assume that \sim is an equivalence relation on A and that $F: A \times A \rightarrow A$. Define that F is compatible with \sim if whenever $x \sim x^{\prime}$ and $y \sim y^{\prime}$, then also

$$
F(x, y) \sim F\left(x^{\prime}, y^{\prime}\right)
$$

Show that there exists a unique function $\bar{F}:(A / \sim) \times(A / \sim) \rightarrow(A / \sim)$ s.t.

$$
\bar{F}([x],[y])=[F(x, y)]
$$

if and only if F is compatible with \sim. Note that this is an analogue for Theorem 3Q in the book, which we proved in the class.
5. The multiplication of integers is defined as follows:

$$
[\langle m, n\rangle] \cdot \mathbb{Z}[\langle p, q\rangle]=[\langle m p+n q, m q+n p\rangle] .
$$

Show that this definition is well posed, that is, the function $\cdot \mathbb{Z}: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ exists and is unique (use the previous exercise).

