Elements of Set Theory, Fall 2009

Exercise 4

16.10.2009

- 1. Call a natural number *even* if it has the form $2 \cdot m$ for some m, and *odd* if it has the form $(2 \cdot p) + 1$ for some p. Show that each natural number is either even or odd but never both.
- 2. Prove that ω is a transitive set using the well-ordering of ω .
- 3. Suppose that A is a transitive set. Show that if \in well-orders A, i.e., the relation $\{\langle x, y \rangle \in A \times A \mid x \in y\}$ is a well-ordering on A, then \in well-orders A_+ also.

In the following exercise we begin using the obvious notational convention of writing F(x, y) instead of $F(\langle x, y \rangle)$. More generally we write $F(x_0, \ldots, x_{n-1})$ instead of $F(\langle x_0, \ldots, x_{n-1} \rangle)$ when $F: A^n \to B$.

4. Assume that \sim is an equivalence relation on A and that $F : A \times A \to A$. Define that F is *compatible* with \sim if whenever $x \sim x'$ and $y \sim y'$, then also

 $F(x,y) \sim F(x',y')$

Show that there exists a unique function $\bar{F}: (A/\sim) \times (A/\sim) \to (A/\sim)$ s.t.

$$\bar{F}([x], [y]) = [F(x, y)]$$

if and only if F is compatible with \sim . Note that this is an analogue for Theorem 3Q in the book, which we proved in the class.

5. The *multiplication* of integers is defined as follows:

$$[\langle m, n \rangle] \cdot_{\mathbb{Z}} [\langle p, q \rangle] = [\langle mp + nq, mq + np \rangle].$$

Show that this definition is well posed, that is, the function $\cdot_{\mathbb{Z}} : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ exists and is unique (use the previous exercise).