Elements of Set Theory, Fall 2009

Exercise 3

9.10.2009

1. Assume that $A \times B=C \times D$. Under what conditions we can conclude that $A=C$ and $B=D$?
2. Suppose that $\bigcup\left(a_{+}\right)=a$. Show that a is \in-transitive. (The converse was shown in the class.)
3. Show that a is \in-transitive if and only if $\mathcal{P}(a)$ is \in-transitive.
4. Prove the associative law for natural numbers: For all $m, n, p \in \omega$,

$$
m+(n+p)=(m+n)+p
$$

Hint: induction on p.
5. Let $F: A \rightarrow A$ be a one-to-one function, and suppose that $c \in A \backslash \operatorname{ran}(F)$. Define $h: \omega \rightarrow A$ recursively by

$$
\begin{gathered}
h(0)=c \\
h\left(n_{+}\right)=F(h(n)) .
\end{gathered}
$$

Show that h is one-to-one. (Hint: induction. This was essentially a part of the proof that any Peano system is isomorphic to ω.)
6. Suppose that $f: B \rightarrow B$ is a function, and $A \subseteq B$. We have two alternative methods for defining the closure of A under f :

- The "downwards" method: Let $C^{*}=\bigcap\{X \in \mathcal{P}(B) \mid A \subseteq X \wedge f[X] \subseteq X\}$.
- The "upwards" method: Let $h: \omega \rightarrow \mathcal{P}(B)$ be the function defined recursively by

$$
\begin{gathered}
h(0)=A \\
h\left(n_{+}\right)=h(n) \cup f[h(n)],
\end{gathered}
$$

and define $C_{*}=\bigcup_{n \in \omega} h(n)$.
Show that these definitions yield the same result, that is, $C^{*}=C_{*}$.

