Elements of Set Theory, Fall 2009

Exercise 2

2.10.2009

- 1. Prove the following extensionality principle for functions: If F and G are functions for which dom (F) = dom(G) and F(x) = G(x) for every $x \in \text{dom}(F)$, then F = G.
- 2. Show that if F and G are functions, then $F \cap G$ is a function. Give examples of functions F and G so that $F \cup G$ is not a function.
- 3. If F is any set, show that
 - (a) $F[\bigcup \mathcal{A}] = \bigcup \{F[A] \mid A \in \mathcal{A}\},\$
 - (b) $F[\bigcap \mathcal{A}] \subseteq \bigcap \{F[\mathcal{A}] \mid \mathcal{A} \in \mathcal{A}\}$ and equality holds if F is single-rooted.

(This is Theorem 3K in Enderton's. You can see the book for partial solutions. For (b), remember that we defined $\bigcap \emptyset = \emptyset$.)

- 4. Show that the following versions of Axiom of Choice are equivalent:
- (AC1) For every function F such that $F(x) \neq \emptyset$ for every $x \in \text{dom}(F)$, there exists a function f with dom (f) = dom(F) and $f(x) \in F(x)$.
- (AC2) For every relation R there exists a function $H \subseteq R$ such that dom(H) =dom(R).

We already proved $(AC1) \Rightarrow (AC2)$ in the class, so you only need to prove $(AC2) \Rightarrow (AC1)$.

- 5. We proved in the class that if R is an equivalence relation on A, then A/R is a partition of A. Formulate and prove the other direction of this result, i.e., if Π is a partition of A, define an equivalence relation R on A so that $\Pi = A/R$.
- 6. Suppose that R is a linear ordering. Show that R^{-1} is a linear ordering.