Elements of Set Theory, Fall 2009

Exercise 11

11.12.2009

1. Show that the natural ordering of ordinal numbers is defined by proper inclusion as well as by membership, that is,

$$
\alpha \in \beta \text { iff } \alpha \subsetneq \beta .
$$

2. Show that
(a) any ordinal number α is the collection of all smaller ordinal numbers,
(b) $\alpha_{+}=\alpha \cup\{\alpha\}$ is the least ordinal number greater than α,
(c) if A is a set of ordinals, then $\bigcup A$ is the least ordinal number greater or equal to every element of A.
3. Assume that $\langle A,<\rangle$ is a well-ordered structure, and $t \in A$. Show that $\langle\operatorname{seg}(t),<\rangle$ is not isomorphic to $\langle A,<\rangle$.
Conclude that for well-ordered structures $\left\langle A,<_{A}\right\rangle$ and $\left\langle B,<_{B}\right\rangle$, exactly one of the following holds: $\left\langle A,<_{A}\right\rangle \cong\left\langle B,<_{B}\right\rangle$, or $\left\langle A,<_{A}\right\rangle$ is isomorphic to some initial segment of $\left\langle B,<_{B}\right\rangle$, or $\left\langle B,<_{B}\right\rangle$ is isomorphic to some inial segment of $\left\langle A,<_{A}\right\rangle$
4. Suppose that α and β are ordinals. Show that $\alpha \in \beta$ if and only if $\alpha_{+} \in \beta_{+}$. Hint: trichotomy.
5. An ordinal α is a limit ordinal, if $\alpha \neq \beta_{+}$for any ordinal β. Show that an ordinal α is a limit if and only if $\alpha=\bigcup \alpha$.
6. Prove the following version of transfinite induction: Suppose that $\phi(x)$ is any formula such that for every ordinal α, if $\phi(\beta)$ holds for all $\beta \in \alpha$, then also $\phi(\alpha)$ holds. Then $\phi(\alpha)$ holds for every ordinal α.
