Elements of Set Theory, Fall 2009

Exercise 11

11.12.2009

1. Show that the natural ordering of ordinal numbers is defined by proper inclusion as well as by membership, that is,

$$\alpha \in \beta$$
 iff $\alpha \subsetneq \beta$.

- 2. Show that
 - (a) any ordinal number α is the collection of all smaller ordinal numbers,
 - (b) $\alpha_{+} = \alpha \cup \{\alpha\}$ is the least ordinal number greater than α ,
 - (c) if A is a set of ordinals, then $\bigcup A$ is the least ordinal number greater or equal to every element of A.
- 3. Assume that $\langle A, \langle \rangle$ is a well-ordered structure, and $t \in A$. Show that $\langle \operatorname{seg}(t), \langle \rangle$ is not isomorphic to $\langle A, \langle \rangle$.

Conclude that for well-ordered structures $\langle A, <_A \rangle$ and $\langle B, <_B \rangle$, exactly one of the following holds: $\langle A, <_A \rangle \cong \langle B, <_B \rangle$, or $\langle A, <_A \rangle$ is isomorphic to some initial segment of $\langle B, <_B \rangle$, or $\langle B, <_B \rangle$ is isomorphic to some initial segment of $\langle A, <_A \rangle$

- 4. Suppose that α and β are ordinals. Show that $\alpha \in \beta$ if and only if $\alpha_+ \in \beta_+$. *Hint:* trichotomy.
- 5. An ordinal α is a *limit ordinal*, if $\alpha \neq \beta_+$ for any ordinal β . Show that an ordinal α is a limit if and only if $\alpha = \bigcup \alpha$.
- 6. Prove the following version of transfinite induction: Suppose that $\phi(x)$ is any formula such that for every ordinal α , if $\phi(\beta)$ holds for all $\beta \in \alpha$, then also $\phi(\alpha)$ holds. Then $\phi(\alpha)$ holds for every ordinal α .