Elements of Set Theory, Fall 2009

Exercise 10
4.12.2009

1. Define a relation $<_{L}$ on $\omega \times \omega$ by

$$
\langle m, n\rangle<_{L}\left\langle m^{\prime}, n^{\prime}\right\rangle \text { iff } m<m^{\prime} \text { or }\left(m=m^{\prime} \text { and } n<n^{\prime}\right) .
$$

Show that $<_{L}$ is a well-ordering. ($<_{L}$ is called the lexicographic ordering of $\omega \times \omega$.)
2. Show that there is no function f from ω onto $\omega \times \omega$ with the property that

$$
m<n \Rightarrow f(m)<_{L} f(n) .
$$

3. By an earlier exercise, we know that $\omega_{+}=\omega \cup\{\omega\}$ is well-ordered by ϵ. Show that there is no function f from ω onto ω_{+}with the property that

$$
m<n \Rightarrow f(m) \in f(n) .
$$

4. Assume that $<$ is a well-ordering on A, and $f: A \rightarrow A$ is an increasing function, that is,

$$
x<y \Rightarrow f(x)<f(y) .
$$

Show that $x \leq f(x)$ for every $x \in A$. Hint: Consider $f(f(x))$ for the least counterexample x.
5. Assume that $S \subseteq \mathbb{R}$ is well-ordered by the usual ordering of reals. Show that S is countable. Hint: Choose for each $x \in S$ a rational q such that q is strictly between x and the next element of S. Do you need to use AC?
6. Suppose that R is a well-ordering of A. Show that if R^{-1} also well-orders A, then A is finite.

