Elements of Set Theory, Fall 2009

Exercise 1

25.9.2009

As agreed in the class, you will be awarded the points of one problem (6pt) in the exam if you solve 50% of the exercises during the semester, and you will be awarded 9 pt if you solve 75%. (Solving means here that you have honestly tried to give a solution to the problem.)

1. (a) Show that if $A \subseteq B$, then $\bigcup A \subseteq \bigcup B$ and $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
(b) Show that for any set $A, \cup \mathcal{P}(A)=A$.
(c) Assume that $\mathcal{P}(A)=\mathcal{P}(B)$. Show that $A=B$.
2. Prove De Morgan's Laws:

$$
\begin{aligned}
& C \backslash(A \cup B)=(C \backslash A) \cap(C \backslash B) \\
& C \backslash(A \cap B)=(C \backslash A) \cup(C \backslash B) .
\end{aligned}
$$

3. Show that there is no set to which every singleton set belongs. (Hint: if A was such a set, construct a universal set from A.)
4. Suppose that A is a finite set with n elements. Show that the number of elements in $\mathcal{P}(A)$ is 2^{n}. (Hint: induction on n.)
5. Recall that we defined $\operatorname{dom}(A)$ and $\operatorname{ran}(A)$ for any set A. Show that A is a relation if and only if $A \subseteq \operatorname{dom}(A) \times \operatorname{ran}(A)$.
6. Suppose that we attempted to generalize the Kuratowski definition for ordered pairs to ordered triples by defining

$$
\langle x, y, z\rangle^{*}=\{\{x\},\{x, y\},\{x, y, z\}\} .
$$

Show that this definition is unsuccesful by giving examples of sets x, y, z, u, v, w such that $\langle x, y, z\rangle^{*}=\langle u, v, w\rangle^{*}$ but $y \neq v$ or $z \neq w$ (or both).

