
8 WinBUGS/OpenBUGS

WinBUGS = Bayesian inference Using Gibbs Sampling

WinBUGS is a computer program aimed at making MCMC available to applied researchers. Its in-
terface is fairly easy to use, and it can also be called from programs such as R. WinBUGS is free and
can be found on the website:

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml

OpenBUGS program, found at: http://www.openbugs.info/w/

Given a likelihood and prior distribution, the aim of both WinBUGS and OpenBUGS is to sample
model parameters (and other unknown quantities) from their posterior distribution. After the param-
eters have been sampled for many iterations, parameter estimates can be obtained and inferences can
be made by using the sample as approximation of the posterior distribution.

For a given application project, three �les are used:

1. A program �le containing the model speci�cation.
2. A data �le containing the data in a speci�c (slightly strange) format.
3. A �le containing starting values ('initials') for model parameters (optional).

File 3 is optional because WinBUGS/OpenBUGS can generate its own starting values. There is no
guarantee that the generated starting values are good starting values, though. All three �les can be
written in one if manually choosing by click-and-point the model code, data and inits.

Advice for new users:

1. Step through the simple worked example in the tutorial.
2. Try other examples provided with this release
(see Examples Volume 1 and 2, also Vol 3 in OpenBUGS)
3. Edit the BUGS language to �t an example of your own.

It is easiest to take existing code for a simple model and modify that for your purpose. It as been
recommended that 'users should already be aware of the background to bayesian Markov chain Monte
Carlo methods'. That's why it was included in the introduction part.

The current Metropolis MCMC algorithm is based on a symmetric normal proposal distribution, whose
standard deviation is tuned over the �rst 4000 iterations in order to get an acceptance rate of between
20% and 40%. All summary statistics for the model will ignore information from this adapting phase.
In OpenBUGS, the samplers have been further developed and this process is expected to continue.
WinBUGS will no longer be updated. Hence, version 1.4.3 will be the last of WinBUGS.

Strong recommendation: the �rst step in any analysis should be the construction of a directed
graphical model. Brie�y, this represents all quantities as nodes in a Directed Acyclic Graph

65

(DAG), in which arrows run into nodes from their direct in�uences (parents). The model represents
the assumption that, given its parent nodes pa[v], each node v is independent of all other nodes in the
graph except descendants of v, where descendant has the obvious de�nition. This visualization of the
model is very useful for presenting the model in a glance.

Nodes in the graph are of three types.

1. Constants are �xed by the design of the study: they are always founder nodes (i.e. do not have
parents), and are denoted as rectangles in the graph. They must be speci�ed in a data �le.

2. Stochastic nodes are variables that are given a conditional distribution, and are denoted as ellipses
in the graph; they may be parents or children (or both). Stochastic nodes may be observed in which
case they are data, or may be unobserved and hence be parameters, which may be unknown quantities
underlying a model, observations on an individual case that are unobserved say due to censoring, or
simply missing data. They are coded with ∼ before the speci�ed conditional distribution. (e.g. x ∼
dnorm(mu,tau)).

3. Deterministic nodes are logical functions of other nodes. Note that they are not allowed to be
given data values. Data should always be given to a stochastic node as an observed value for that.
Therefore, we cannot specify a structure where e.g. X ∼ N(µ, τ) and Y ∼ N(µ, τ) and Z ← (X+Y)/2,
and then assign Z some observed data value. This would lead to an error message indicating multiple
de�nition of Z. Instead, we need to de�ne Z as a stochastic node Z ∼ N(µ, 2τ), to be able to assign
data value for it. This has been causing some headache when trying to de�ne distributions implicitly.
It is not possible. A conditional distribution needs to be chosen for every stochastic node in the graph.
Deterministic nodes are coded with ←. (e.g. x <- log(z*z)/2 + u).

Stochastic quantities can be speci�ed as data by giving them values in a data �le, in which values for
constants are also given.

Example: x ∼ N(µ, 1) with prior µ ∼ N(0, 104). The DAG would run from stochastic node µ (parent
of x) to stochastic node x (child of µ). The latter would be assigned some data value, which leaves
only µ as an unknown parameter for which the posterior will be computed, given data value for x.
A deterministic node could be added by de�ning e.g. logmu ← log(µ), for monitoring the MCMC
samples for the log of µ, if its posterior happens to be of any interest. The constant value of 1 for the
variance in the conditional model of x could be given as a �xed parameter τ which then needs to be
given also as data, τ = 1. This would be a founder node in the DAG since there would be no parents
for it. To summarize: these speci�cations together are needed for constructing the MCMC sampler
(inside WinBUGS/OpenBUGS) for computing the posterior π(µ | x). If x is not given a data value,
it too remains an unknown stochastic node. E�ectively, it would then be simulated from the prior
predictive distribution, whereas µ would be simulated from its prior only. After observing x, the pos-
terior predictive distribution π(x∗ | x) for a new, x∗, observation can be computed simply by adding x∗

as an unobserved node in the graph, with the same conditional distribution as there was for x, given µ.

66

x unobserved����µ

?����x

x observed����µ

?
x

x observed, x∗ predicted����µ

?
x

@
@R����x∗

8.1 Steps of installing WinBUGS/OpenBUGS

Go to the website (either Win- or Open-) and follow instructions - it usually works. Because the de-
velopment of WinBUGS is not to be continued, its compatibility with other new software in the future
is not sure. New updates will appear for OpenBUGS. If installing WinBUGS, you should get version
1.4 which is then upgraded to 1.4.3 by installing a patch as instructed. Also, a key�le was required for
getting the fully functional version. This key�le used to expire at the end of the year, and new key�les
were mailed to registered users. However, �nally an 'immortal' key was given for all users, now from the
Website. In OpenBUGS these steps are not involved. You just install the latest version of OpenBUGS.

Installation in Windows machines has usually been straightforward. Some di�culties(?) may occur
with Linux/Mac, but it is possible to run WinBUGS from Mac and OpenBUGS from Linux (and also
WinBUGS via emulators). For detailed instructions with each platform, you should carefully read the
installation instructions provided in the websites. For example, they say:

Note: There appears to be a problem with installing WinBUGS and/or various patches in Windows
Vista. Vista doesn't seem to like anyone overwriting �les in the "C:\Program Files" directory (regard-
less of permissions). Hence we recommend that WinBUGS be installed elsewhere, e.g. "C:\".

If all else fails (for example with a 64-bit machine), you can download a zipped version of the whole
�le structure and unzip it into Program Files or wherever you want it. WinBUGS makes no changes
to the Registry.

I have also installed WinBUGS on a memory stick. Seems to be running!

8.2 Steps of running WinBUGS/OpenBUGS models

Assume you have an existing BUGS model code in a �le ('.odc' or '.txt'). Assume also that the data
list is included in the same �le (a list written below the model code).

1. Open the �le in WinBUGS/OpenBUGS
2. Open Model > Specification...

3. Check the model's syntax
4. Load data
5. Compile model
6. Set initial values (from a preset list, or let the software generate them)
7. Run the model Model > Update...

67

8. After convergence, set parameters of interest for monitoring. Inference > Samples...

9. Run again the model to get su�ciently large sample
10. See the output graphically (history, density), and summary statistics (stats)

8.3 Structure of the model

The syntax and form of a model in WinBUGS follows (nearly) directly from the structure of the
required densities in the Bayes formula. In OpenBUGS, the structure of the language is the same,
with some added new functions or distributions which gradually may evolve. Other features have
also emerged in OpenBUGS (see the Webpage for details), including the possibility to get your model
code printed with LaTeX commands. However the core of the model speci�cation language is still
the same. Understanding of the product rule and bayes formula, as well as other basic theorems of
probability calculus is as essential as understanding grammatical rules and structure of sentences in
natural languages. We need to specify a conditional distribution of data, and a prior. These can
consist of several conditional distributions. The whole structure is convenient to draw as a Directed
Acyclic Graph (DAG) which you can frequently �nd in BUGS examples. (There are some conventions
to draw di�erent arrows for stochastic dependencies and deterministic dependencies, etc.). This makes
a visual expression of the logical structure for a complete speci�cation of a joint probability model.
It is this logical structure we need to code for WinBUGS/OpenBUGS.

The joint posterior density is always fully speci�ed when all these necessary parts are de�ned. There-
fore, WinBUGS is a declarative language, as opposed to procedural programming languages. (This
is important to remember). In a procedural language the following code could be valid:

X := 1;

Y := 1;

Z := X+Y;

but the following would not compute procedurally:

Z := X+Y;

X := 1;

Y := 1;

In WinBUGS/OpenBUGS, the order of these statements would not matter, because only the logical
structure is de�ned which can be written out in any order, as long as all the quantities are de�ned
somewhere and their combination de�nes a valid model.

In WB, we de�ne a chain of conditional distributions that was obtained from the product rule when
writing the Bayes formula. Each variable v ∈ V in the model can be a 'child node' that is conditionally
dependent on its 'parent nodes':

π(V) =
∏
v∈V

π(v | parents{v}),

and the last variables in this chain have no further parents, i.e. their conditional distribution does not
depend on any further variables - it is the prior distribution. The whole structure speci�es a bayesian
model. A simple example (assuming data x, y, n,m) could be:

68

model{

x ~ dbin(px,n)

y ~ dbin(py,m)

px ~ dbeta(a,b)

py ~ dbeta(a,b)

a ~ dexp(1)

b ~ dexp(1)

}

or a linear model (assuming data x, y):

model{

for(i in 1:N){

y[i] ~ dnorm(mu[i],tau)

note that: tau = 1/sigma^2

mu[i] <- alpha + beta * (x[i]-mean(x[]))

}

alpha ~ dnorm(0,0.0001); beta ~ dnorm(0,0.0001)

tau ~ dgamma(0.001,0.001)

}

list(N=5,x=c(1,2,3,4,5),y=c(1,3,3,3,5))

Comment lines can be written, starting with '#', and su�cient commenting is indeed recommended!
In the binomial model above the DAG would be:

�� ��α, β

�
�	

@
@R�

�
�
�px

x
�
�

�
�

�
�

�
�

?

py

y
�
�

�
�

?

A DAG is really the skeleton that gives the necessary structure for a valid bayesian model as well as
for a valid WB model code. (The exception is that in WB we can also de�ne Gibbs sampling algorithm
directly using 'full conditionals').

Since cycles are not allowed in a DAG, then how to de�ne models where some variable has some
feedback into itself? For example, the size of a population drives population growth which again
determines the population size. The question is: what is the probability model for this? It is a model
of a stochastic process. The variables need to be indexed with respect to time, so that the conditional
distribution of Xt+1 depends on Xt, and this can be written as a DAG without cycles. Alternatively,
(but this can be more complicated), we could try to solve the conditional probability distribution for
the whole set of values X1, . . . , Xt, given some other parameters of the model. But if the X variables
are unknown, their simulation might require block updating which is not possible in WinBUGS which
is based on single site updating algorithms (unless there are extensions available). In General, Gibbs

69

sampling theory allows block updating if we can just solve what the full conditional density for a block
(vector of parameters) is.

doodle BUGS
Models can be de�ned in WB either by writing the corresponding WB code, or by drawing the DAG
using doodle-BUGS. Once the 'doodle' is de�ned, the corresponding WB code is automatically gener-
ated. But the opposite is not possible: a picture of a DAG cannot be generated from winBUGS code,
you need to draw it elsewhere. But the WB language is much more versatile than doodle-BUGS, so it
is best to learn to write WB codes, and do drawing of DAGs elsewhere.

8.3.1 Example: di�erent codes, same model

p ~ dbeta(1,1)

x ~ dbin(p,n)

���������

p ~ dbeta(a,b)

a <- x+1 ; b <- n-x+1

���������

p ~ dunif(0,1)

pr <- exp(logfact(n)-logfact(x)-logfact(n-x)+x*log(p)+(n-x)*log(1-p))

one ~ dbern(pr); one <- 1

���������

z ~ dnorm(0,1)

p <- phi(z)

x ~ dbin(p,n)

���������

p ~ dunif(0,1)

for(i in 1:x){

result[i] ~ dbern(p); result[i] <- 1

}

for(j in x+1:n){

result[j] ~ dbern(p); result[j] <- 0

}

8.3.2 Posterior 'queries'

Once we can simulate from the posterior with WB, we can derive answers to several questions, or
'queries', that depend on the unknown parameters described by the posterior. For example, in com-
paring two populations with unknown prevalences p1 and p2, we might be interested in the following
probabilities:

P (p1 > p2 | data), P (|p1 − p2| > c | data), P (p1/p2 > 1 | data), P (p21 + p22 > c | data)

70

which could correspond to some hypothesis. The last example could be related to e.g. genetical
application in which pi would be the prevalence of allele i in Hardy-Weinberg -equilibrium. The
classical statistical approach of hypothesis testing concerning parameters and their transformations is
replaced in bayesian context by computation of these probabilities. For example, the posterior density
of risk ratio p1/p2 could be visualized as the simulated empirical distribution from WB, but we could
also compute P (p1/p2 > 1 | data) as an answer to the question if the risk ratio is larger than one. This
could be done by the following code, using step-function:

model{

for (i in 1:2){

x[i] ~ dbin(p[i],n[i])

p[i] ~ dbeta(1,1)

}

Pabsdiff <- step(abs(p[1]-p[2])-c)

}

Here, Pabsdiff is an indicator variable (remember from the preliminaries). When we compute the
average of this indicator over the MCMC simulation i = 1, . . . , N we get an approximation of the
required probability:

1

N

N∑
i=1

Ii ≈ E(I) = 1× P (I = 1) + 0× P (I = 0) = P (I = 1)

Asking for prediction:

We might also need a prediction for a forthcoming variable x
new

in some forthcoming sample of size
m1, under unknown prevalence p1. This could be computed simply by adding the following:

xnew[1] ∼ dbin(p[1],m[1])

In the example of linear regression, we could ask for a prediction of y6 at the next point x6. This could
be achieved by adding one more step in the loop by setting N + 1 instead of N , and by adding NA in
the data list in place of y[6].

8.4 Data structures

Anything that is not an unknown (random) quantity in the model, has to be �xed value, i.e. given as
data or constant. Data are listed separately from the model code, for example:

list(x=4,

y=c(3.5,7.2,9.1),

z=structure(

.Data=c(7,3,5,1,8,2),

.Dim=c(2,3)))

which de�nes a scalar x, vector y and a matrix z of size 2 × 3. Data matrices can also be de�ned in
this form:

71

z[,1] z[,2] z[,3]

7 3 5

1 8 2

END

so that �rst index of z needs to be left empty, and there must be an empty line after END. You can
avoid much trouble if you always check carefully that you have indexed your data correctly. There are
no useful tools for checking data inconsistencies within WinBUGS. When data variables have been
de�ned and assigned, there should be a conditional distribution for them in the code. For example, if
variable y is given as data, then we might have a model directly for it:

y ~ dnorm(mu,tau)

Alternatively, we might be interested in modeling some transformation of this variable, which could
be done as:

yy <- log(y)

yy ~ dnorm(mu,tau)

Of course, we might have calculated the transformed y already beforehand, and then use that as data.
Note that the previous use of transformations within the code is actually against WB syntax which
prohibits multiple de�nitions of the same node. This is the exception to the rule. Otherwise, you get
error messages: 'multiple de�nition of yy'. An error would be caused also if variable y was a vector
with values given in the data, and some values would be missing ('NA'). The missing values would then
be stochastic nodes and the above construction would lead to error.

8.5 Data from R

If data are in some other format in some other software, you have to �nd out how to make it in WB
format. Note: in R, the syntax for structure is similar, but the indexing of rows and columns has
opposite order. There are some tools that can be used for converting data:

http://www.mrc-bsu.cam.ac.uk/bugs/weblinks/webresource.shtml

For example, for Matlab, some tools are also at:

http://www.cs.ubc.ca/ murphyk/Software/MATBUGS/matbugs.html

See BMUW, p. 103, and also WinBUGS manual 'Model Speci�cation' > 'Formatting of data': as-
sume the following matrix x (of size 2*3) is the original object. In R, this could be de�ned by
x<-matrix(c(1,2,3,4,5,6),2,3,byrow=TRUE):

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

72

To get this in the format of 'list' for WinBUGS, we could produce almost similar printing in R, by
using commands:

x2 <- list(x=t(x))

dput(x2)

Alternatively, to print in a �le: dput(x2,'filename.txt'). Either way, this should print out some-
thing like:

structure(list(x=structure(c(1,2,3,4,5,6),

.Dim=c(3,2))), .Names="x")

This print out would be suitable for copying to BUGS, but some corrections need to be edited:
(1) remove the 'structure(' from the beginning, (2) remove the ',.Names="x")', and (3) reverse the
dimensions. After this editing, we have

list(x=structure(.Data=c(1,2,3,4,5,6),.Dim=c(2,3)))

And this corresponds to the original object we wanted. The most important thing is to reverse the
order of the dimension argument. For example:

x <- array(c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),dim=c(3,3,2))

produces this in R:

, , 1

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

, , 2

[,1] [,2] [,3]

[1,] 10 13 16

[2,] 11 14 17

[3,] 12 15 18

To reverse the indexing in R, use:

dimx <- dim(x) xx <- array(dim=rev(dimx)) for(i in 1:dimx[1]){

for(j in 1:dimx[2]){

for(k in 1:dimx[3]){

xx[k,j,i]<-x[i,j,k]}}}

which will produce the following

73

, , 1

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 10 13 16

, , 2

[,1] [,2] [,3]

[1,] 2 5 8

[2,] 11 14 17

, , 3

[,1] [,2] [,3]

[1,] 3 6 9

[2,] 12 15 18

Finally, use dput(xx) to print, and then modify the output as before before importing to WinBUGS:

list(x= structure(.Data=c(1, 10, 4, 13, 7, 16, 2, 11, 5, 14, 8, 17,

3, 12, 6, 15, 9, 18), .Dim = c(3, 3, 2)))

After you have imported the data in WinBUGS, you can (after compiling the model) view it by
selecting Info>Node Info>Values. The result would be:

x[1,1,1] 1.0

x[1,1,2] 10.0

x[1,2,1] 4.0

x[1,2,2] 13.0

x[1,3,1] 7.0

x[1,3,2] 16.0

x[2,1,1] 2.0

x[2,1,2] 11.0

x[2,2,1] 5.0

x[2,2,2] 14.0

x[2,3,1] 8.0

x[2,3,2] 17.0

x[3,1,1] 3.0

x[3,1,2] 12.0

x[3,2,1] 6.0

x[3,2,2] 15.0

x[3,3,1] 9.0

x[3,3,2] 18.0

8.6 Indexing and looping

Indexing of variables is an e�cient way of simplifying and shortening WB code. You just need to be
careful in that the indexing is correct. For example:

74

for(i in 1:3){ y[i] ~ dnorm(mu,tau) }

It is also possible to de�ne a distribution of a vector variable:

y[1:3] ~ dmnorm(mu[1:3],tau[1:3,1:3])

Here, it is su�cient to specify the indexes on the left hand side for y, whereas µ and τ could be written
in the form mu[] and tau[,] which would include the whole vector or matrix. Also, sums could be
de�ned over the whole vector:

s <- sum(theta[])

s2 <- sum(eta[,1])

Remember, a loop is just a way of writing repeated similar expressions in short. It is still just a
collection of logical statements assembled together. In setting the limits for a loop we can either write
it for(i in 1:3), or specify the limit(s) as a constant with data: for(i in 1:L), list(L=3). If
L is not given in data, we get the message: 'variable L is not de�ned'. For easier editing of new
model versions, all constants should be de�ned together with data - in a single place. The model code
becomes more versatile then. It is also convenient to use nested looping:

for(i in 1:I){

for(j in 1:J){

y[i,j] ~ dpois(mu[i,j])

log(mu[i,j]) <- mu0 + mu1*x1[i] + mu2*x2[j] + e[i,j]

}

}

The most frequent coding errors with loops are forgetting the braces, "}", or wrong position of the
braces, or forgetting the indexing, or wrong indexing. Often this results to an error message: "multiple
de�nition of..."

The range of indexing cannot be random. The following approach might be useful in such case:

for(i in 1:N){

ind[i] <- 1 + step(i-K - 0.01)

y[i] ~ dnorm(mu[ind[i]],1)

}

Here, variable K is unknown, K ∈ {1, . . . ,N}, and it controls which variables yi are modelled as
N(µ1, 1). (Can be useful in changepoint-problems).

8.6.1 Example: change point estimation

Assume data about monthly accidents yi. This can be modeled using Poisson distribution, with
parameter µ1 before the change point and µ2 after the change point. Prior distribution for the location
of the change point could be discrete uniform 1/N , where N is the number of months. The model
assumes that µ1 applies at least to the �rst month, and that it could also apply to the last month, in
which case there would not be a change point at all.

75

model{

for(i in 1:N){

y[i] ~ dpois(mu[ind[i]])

ind[i] <- 1 +step(i-K-0.01)

pk[i] <- 1/N

}

K ~ dcat(pk[]); mu[1] ~ dgamma(0.01,0.01); mu[2] ~ dgamma(0.01,0.01)

}

An example with real data: coal mining accidents in Britain 1851-1962. (Carlin et al: Hierarchical
Bayesian Analysis of Changepoint Problems. Appl. Statist. (1992). 41, No. 2, pp.389-405). Did
improvement in technology and safety practices have an actual e�ect of the rate of serious accidents?
When did the change actually occur? This could be modeled using the following code.

model{

for(year in 1:N){

T[year] <- year+1850

D[year]~dpois(mu[year])

log(mu[year])<-b[1]+step(year-changeyear)*b[2]

}

for(j in 1:2){b[j]~dnorm(0,0.0001)}

actual<-changeyear+1850

changeyear ~ dunif(1,N)

mu1 <- exp(b[1])

mu2 <- exp(b[1]+b[2])

}

list(D=c(4, 5, 4, 1, 0, 4, 3, 4, 0, 6,

3, 3, 4, 0, 2, 6, 3, 3, 5, 4,

5, 3, 1, 4, 4, 1, 5, 5, 3, 4,

2, 5, 2, 2, 3, 4, 2, 1, 3, 2,

1, 1, 1, 1, 1, 3, 0, 0, 1, 0,

1, 1, 0, 0, 3, 1, 0, 3, 2, 2,

0, 1, 1, 1, 0, 1, 0, 1, 0, 0,

0, 2, 1, 0, 0, 0, 1, 1, 0, 2,

2, 3, 1, 1, 2, 1, 1, 1, 1, 2,

4, 2, 0, 0, 0, 1, 4, 0, 0, 0,

1, 0, 0, 0, 0, 0, 1, 0, 0, 1,

0, 0),N=112)

Some initial values might be needed to get this running:

list(b=c(0,0),changeyear=50)

8.7 Logical expressions

Long expressions can be too long for WinBUGS. You would then get the error message: "logical
expression too complex". This can be avoided only by using additional variables:

76

a <- g + t + g*u + 7*pow(w,s)

b <- r + sqrt(h) - inprod(z[],zz[]) + e/p

c <- a+b

instead of writing the whole expression as a one-liner. Some useful logical functions in WinBUGS are
(there are more in OpenBUGS):

abs(e)

equals(e1,e2)

step(e)

exp(e)

log(e)

inprod(v1,v2)

inverse(v)

max(e1,e2)

min(e1,e2)

ranked(v,s)

mean(v)

sum(v)

sd(v)

phi(e)

pow(e1,e2)

sqrt(e)

Note: there is no function for computing a product. (Except, in OpenBUGS there is). But the sum-
mation can be used for doing this, by taking logarithms: ab = exp(log(ab)) = exp(log(a) + log(b)).

Remember: these logical functions calculate a deterministic value that must be assigned to some vari-
able, "←", and those variables must not have an assigned value as data, nor initial value. That would
lead to 'multiple de�nition' errors.

Sometimes we need to have IF-THEN -structures, but these are not part of WinBUGS syntax in the
same way as in procedural languages. Remember, WinBUGS is a declarative language. Therefore, if
we need something like this:

if y = 1 then x ∼ N(µ1, 1)
else x ∼ N(µ2, 1),

it has to be coded as:

x[1] ~ dnorm(mu[1],1)

x[2] ~ dnorm(mu[2],1)

z <- equals(y,1)*x[1] + (1-equals(y,1))*x[2]

This shows how to de�ne mixture distributions by setting y as a Bernoulli-variable, although we could
not use the above when z is given as observed data value. (Data should always be assigned to a
stochastic node, de�ned by ∼). The Bernoulli probability would correspond to weight of the �rst
mixture component, N(µ1, 1). Also step-function could be used. Moreover, multiple logical choices
could be implemented by using categorical-distribution:

77

a ~ dcat(p[])

z ~ dnorm(mu[a],1)

In this case, data could well be assigned to z which is now a stochastic node.

Note: sometimes you may need to compute an expression that is unde�ned for some values, e.g. 1/X.
Now, if X has e.g. Poisson distribution model X ∼ Poisson(θ), and θ is given as constant or random,
it can happen that for some iterations X = 0. Computing 1/X would lead to runtime error. How to
avoid this? If we had a procedural language, we could use IF-THEN structure by �rst calculating the
value of X and only then choose what to calculate (or not) after knowing what X value we had. But
in declarative language we need to express a de�nition using only logically structured expressions. For
example:

Y <- equals(X,0)*(-9) + (1-equals(X,0))*(1/X))

It would seem that this solves the problem by setting an arbitrary value of −9 whenever X = 0, and
only calculate Y = 1/X when X ̸= 0. But WinBUGS produces an error, because it calculates also
the case 1/0 even though it would be multiplied by zero (which still would be unde�ned 0/0). This
does not work! The only hope is to replace X by X + ϵ with a very small value for ϵ to ensure that
WinBUGS can compute 1/(X + ϵ) for all values of X. But this introduces small error when X > 0
(which may be insigni�cant). Alternatively, we really need to think over the modeling, and rede�ne a
new model which does not involve even the possibility of 1/0.

8.7.1 Example: hypothesis of two models

If the alternative hypotheses can be described as alternative models: M1 : N(0, 1) and M2 : N(3, 1)
(with no other choices, so P (M1) = 1−P (M2)) and observed data consists of z = 1, then the posterior
probability of each hypothesis can be modeled as:

model{

a ~ dcat(p[])

p[1] <- 0.5; p[2] <- 0.5

z ~ dnorm(mu[a],1)

mu[1] <- 0; mu[2] <- 3

z <- 1

P1 <- equals(a,1)

}

By computing the average of P1 over the simulation, we can approximate the posterior probability:

P (M1 | z) = P (z | M1)P (M1)

P (z | M1)P (M1) + P (z | M2)P (M2)
.

This can also be interpreted as a classi�cation problem. The observation z belongs to either 'class', so
that the simulated average of P1 is an approximation of the posterior probability of belonging to class
1.

78

8.8 Irregular data structure

Original data are often not in the form of a regular n×m matrix, but in the form of a ragged array.
For example, di�erent individuals can contribute a di�erent number of measurements. Such data could
be augmented by symbols of missing data "NA":

list(A=structure(

.Data=c(7,NA,NA,

9,6,3,

2,NA,5),

.Dim=c(3,3)))

Alternatively, we could code the data as a single vector, and use auxiliary indexing:

list(A=c(7,9,6,3,2,5),

person=c(1,2,2,2,3,3))

In the model, we can then use nested indexing to pick the right data value for the right model
expression:

A[i] ~ dnorm(mu[person[i]],tau)

If the augmentation by NAs was used, WB will interpret these as missing data, and it will automati-
cally sample these values as any other unknown quantities in the model. In other words: we will get a
posterior distribution for the missing values. (Actually, this will be either prior or posterior predictive
distribution). It is also possible to use o�set-variables, but that technique is more prone to coding
errors than the other two approaches.

8.9 Distributions

A list of all available distributions (and also logical functions) is found from the Help-menu. It may
be noted that the list is not exhaustive catalogue of all distributions. Usually it is su�cient also
when some other distributions are needed, because some distributions are related to each other so that
random variables of one distribution can be transformed to random variables of another.

Sometimes, problems occur in special situations. For example, if a binomial distribution becomes
de�ned with N = 0. This could happen when the data contain a list of sample sizes in a surveillance
scheme and sometimes there have been no samples at all. The error can be avoided by removing such
'data' because there would be no loss of information. Another problem might occur if the binomial
N is being estimated. In this case, initial value should be larger than zero, although the resulting
posterior will cover also zero. There are some minor di�erences between di�erent versions of WB
which may result in di�erent behaviour in extreme or unusual situations.

79

8.9.1 Permutation problem

Goal: to construct a random permutation distribution, so that we simulate n ones (and N − n zeros)
within a vector x of length N :

model{

p[1] <- n/N

x[1] ~ dbern(p[1])

for(i in 2:N){

p[i] <- (n - sum(x[1:i-1]))/(N-i+1)

x[i] ~ dbern(p[i]) }

}

list(N=10,n=4)

The 'trick' here for allocating the n items randomly among N places is to de�ne a bernoulli pro-
cess where the probabilities change at every step, depending on the outcomes of the previous steps.
Note: vector x represents the outcome of sampling n items without replacement, whereas x[] ∼
dmulti(p[],n) would represent sampling n items with replacement, with pi = 1/N . In both cases,∑

xi = n. Note also that the single site updating scheme can become a problem when a jump to
next value requires simultaneous change of two or more parameter components. For example, the
above permutation model (and the multinomial model) requires that there is a �xed number of ones
in vector x. Hence, it is not possible in MCMC to move to a valid new value of x by changing just
one element of x. If any element is changed from 0 to 1, or vice versa, then some other element needs
to be changed accordingly to keep the sum of ones unchanged at all MCMC iterations. This requires
so called block updating, generally not available in WinBUGS. Therefore, the above models may only
work when simulating x as a prior distribution ('forward' Monte Carlo), but not if posterior of x would
be required.

8.9.2 Censored data

As a special case of distributions, censored observations may need to be modeled. This means that
instead of an exact observation of X, we only know that X > L. Then, instead of the conditional
density

π(X | parameters)

we need the conditional probability:

P (X > L | parameters)

These are frequently used in survival modeling where the observations are often censored from right
X > L or left X < H, or both L < X < H. In WB, this can be implemented using I-function. For
example, with normal density:

x ~ dnorm(mu,tau)I(low,)

y ~ dnorm(mu,tau)I(,high)

z ~ dnorm(mu,tau)I(low,high)

80

Here, the limits low and high are not allowed to depend on the parameters to be estimated, mu and
tau. The same can be written using 'one's trick'. For example:

x ~ dnorm(mu,tau)

one <- 1

one ~ dbern(pr)

pr <- step(x-L)

Here, 'one' is an instrumental bernoulli-variable which is de�ned as 'observed data' telling that X > L.
Note: in OpenBUGS, 'I' has been replaced by symbol 'C'. ('C' for censoring).

Truncated distribution modeling is di�erent from censored data. For example, a truncated normal
distribution N(µ, τ) over the interval [5,∞] has a probability density that has the same functional
form as the original density, apart from a di�erent normalizing constant:

1∫∞
5 π(x | µ, τ) dx

which depends on the unknown parameters µ and τ . If these parameters are to be estimated, the
normalizing constant is not constant with respect to these parameters, and we need to include the
correct truncated model somehow. (In OpenBUGS, they promise to develop this for more clarity in
the future! There is already T-function for truncation!). In principle, customized own distributions
can be de�ned in WB using 'zero's trick':

C <- 10000

for (i in 1:N){

zeros[i] <- 0

phi[i] <- -log(L[i])+C

zeros[i] ~ dpois(phi[i])

}

where C needs to su�ciently large so that phi would be always positive. The trick is based on observing
that the probability of 'zero' in a Poisson model is P (0) = exp(−λ), i.e. λ = − log(P (0)). When we
replace the probability P (0) as the self de�ned probability of data point x[i], given here as L[i], the
required probability model is obtained in lieu of the 'probability of zero'. If the variable X is discrete,
then − log(L) is automatically positive. Constant C is only needed if X is continuous and L represents
the values of density function that can be larger than one. Then, − log(L) might not automatically
be positive. Alternatively, own distributions could be implemented using 'one's trick':

C <- 10000

for (i in 1:N){

ones[i] <- 1

p[i] <- L[i]/C

ones[i] ~ dbern(p[i])

}

81

where C has to be enough large so that p < 1. Again, if L is directly a probability (not a value of
density function), then this works automatically without constant C.

In both tricks, the data are a set of numbers {x1, . . . , xN} so that the self de�ned distribution gives
the probabilities (or probability densities) Li for each data point, and this can be written out as an
expression.

8.10 Graphics

Graphics in WB is very basic and there are no attempts to develop more sophisticated graphical tools
within WB since there are many other more advanced software already. It is best to take the MCMC
sample out from WB and then process the graphics elsewhere. The histogram plots in WB can be
modestly edited, though. (use 'properties'). The best option for quicker graphical processing is to run
BUGS from R, so that R-graphics is readily available.

8.11 Scripts

It may be convenient to run WB using scripts. In this way, we can avoid mouse clicking all the steps
in every simulation. The script is a series of commands written in the speci�c �le script.odc. This
�le could be for example:

display('log')

check('C:/kurssi/koemalli.odc')

data('C:/kurssi/koemallindata.odc')

compile(3)

gen.inits()

update(500)

set(parameter)

update(1000)

history(parameter)

gr(parameter)

coda(parameter,C:/kurssi/output)

quit()

The model code would be written in the �le koemalli.odc. The script is run by running the �le
backbugs.exe. The speci�ed series of tasks is then done, and the results are written in �les, �le
names starting with 'output'. In OpenBUGS, the scripting language has been further developed.

8.12 More resources

First aid can be sought here:

• Example codes (Help → examples Vol I & II).
• Help → User manual.
• WB FAQ:
http://www.mrc-bsu.cam.ac.uk/bugs/faqs/contents.shtml

• WB mailing list archives:
http://www.jiscmail.ac.uk/lists/bugs.html

82

If nothing helps, you can try WB mailing list.

Moreover, there are some extensions as downloadables. For example, GeoBUGS is a special package
for spatial modelling that is already included in WB1.4.1. (Menu: map).

WB development interface provides more downloadable extensions, such as Reversible-Jump MCMC.

http://www.winbugs-development.org.uk/

By using WBDev, it is possible to build your own 'hardwired' WB functions and distributions, that
would otherwise run too slowly if coded as part of the model de�nition code.

Finally: Always document your BUGS code properly! There can never be too many comment lines
within the code. Just like with any other programming, after 6 months you will not remember clearly
what xzpred2 is. If the model is going to be used by you or anyone else after a longer time, make
sure the code is readable and understandable. After all, it is the mathematical model that should be
uniquely and clearly de�ned. There can be many di�erent BUGS implementations for the same model,
and the implementation of computer code alone is not a su�cient documentation of the model.

8.13 Running WinBUGS/OpenBUGS from R

Check the following site for some instructions:

http://www.stat.columbia.edu/ gelman/bugsR/runningbugs.html

Also, see:

http://cran.r-project.org/web/packages/R2WinBUGS/vignettes/R2WinBUGS.pdf

Basically, you need to: install R, install package R2WinBUGS, possibly also BRugs (for Open-
BUGS). R2WinBUGS should be easy to install install.packages("R2WinBUGS"). For OpenBUGS:
install.packages("arm"), install.packages("BRugs") . Note also:

'BRugs provides an R interface on Windows machines to OpenBUGS . It works only under Windows
and used to be available from CRAN, now it is located at the CRANextras repository'.

http://www.stats.ox.ac.uk/pub/RWin/

But there are more instructions and downloadables from the OpenBUGS Website.

Once you have installations done, write the model in a �le called "m1.bug" in the working directory
of R. For example:

model{

for(i in 1:n){

x[i] ~ dbin(pr[i],10)

83

pr[i] <- p[i]*ps

p[i] ~ dunif(0,1)

}

ps ~ dunif(0,1)

}

In R, load the installed package (library("R2WinBUGS") or library("arm"), library("BRugs")).
Let's generate some data for the problem in R:

n <- 200

p0 <- runif(n,0,1)

x <- rbinom(n,10,p0*0.9)

plot(p0,x)

This could represent 200 populations, each with di�erent prevalence p0, and a sample of size n = 10
taken from each, analyzed with test sensitivity of 0.9. Then, de�ne data variables and parameters to
be monitored, and generate some initial values in R:

data <- list ("x","n")

parameters <- c("p","ps")

inits<-function(){list(p=runif(200,0,1),ps=0.5)}

The previous function will generate randomly initial values for p but set a default value of 0.5 for ps.
The function is handy for generating a long list of values. Run WinBUGS and plot some results for
comparison with the 'true values':

res.sim <-bugs(data,inits,parameters,"m1.bug",n.chains=1,n.iter=2100,

n.burnin=100,n.thin=1);

attach.bugs(res.sim)

plot(density(ps))

points(0.9,0,col="red",pch=15)

par(mfrow=c(3,3))

for(i in 1:9){

plot(density(p[((i-1)*2000+1):(i*2000)]),main='',xlab=paste('p[',as.character(i),']'))

points(p0[i],0,col="red",pch=15) }

In this example, the marginal posterior densities are approximated from the sample by using plot(density())
which is similar to the density plot in WinBUGS. But in R, much more can be done in processing and
visualizing the results.

8.14 DIC in WinBUGS brie�y

Model comparison is a broad topic in itself, and it would be more naturally connected with the (other
broad) topics of 'sensitivity analysis' and 'model �t assessment' than WinBUGS. However, as DIC is
also an available button in WinBUGS, it appears in many examples.

DIC = Deviance Information Criterion

84

It is used for model comparison: a lower DIC value indicates a better model. It is based on the concept
of deviance: D(y, θ) = −2 log(π(y | θ)). If we have normal distribution model, with �xed variance,
then (up to a constant factor) this is the same as the following statistics

T (y, θ) =
1

n

n∑
i=1

(yi − E(yi | θ))2

It may be seen that this is the familiar squared error. Hence, deviance is the generalization of squared
error that can be applied more broadly. A small error means better �t. However, this should be
compensated by the e�ective number of parameters used. With more parameters, a better �t is
naturally expected. Posterior mean deviance is obtained approximately from the MCMC sample:

D̄(y) = E(D(y, θ) | y) ≈ 1

k

K∑
k=1

D(y, θ(k)),

where k is the index of MCMC-iterations. Likewise, we may compute the deviance by using an estimate
of θ, namely its posterior mean: θ̂ = E(θ | data). Using this, we get:

D̂(y) = D(y, θ̂).

D̄(y) describes better the errors of the model than D̂(y), because a �tted model (computed with θ̂)
always �ts the data better than a model computed with other parameter values θ. In contrast, D̄(y)
computes the average error over all possible values of θ. The di�erence can be seen as the gain that
can be achieved by �tting the model. Hence, the 'e�ective number' of parameters could be de�ned as
the di�erence:

pD = D̄(y)− D̂(y),

which represents the gain from estimating θ̂. Also, pD could be interpreted as the number of uncon-
strained parameters in the model. How many parameters? Intuitively, every parameter counts if it
will be estimated without prior constraints, or other constraining prior information. It counts null if
it is completely constrained, or if all information about it comes from the prior. For example:

y ∼ N(θ, 1) , θ ∼ U(0,∞).

In this model θ is constrained to be positive, but in other respects the prior is uninformative. How
many parameters we have e�ectively depends on data y. If y is near zero, then practically half of
the information comes from the prior and half from data, hence the model has about 0.5 e�ective
parameters. But if y is very large, the prior constraint does not have any in�uence, and we e�ectively
have one parameter. In hierarchical models, the number of e�ective parameters depends on the hyper
prior. A very narrow prior will force all group speci�c parameters towards global mean, whereas a
very loose prior lets them become independently estimated without much in�uence from other groups.
In the latter case, the number of e�ective parameters is about the same as the number of groups.

Deviance Information Criterion (DIC) is available in WinBUGS/OpenBUGS, and applicable in some
situations, but not in others (grayed out from the menu) and yet in some cases it may not be useful
even when computed.

85

A better model is the one with smaller DIC-value, but di�erence less than 5 is said to be practically
insigni�cant.

E(D(yrep, θ̂(y))) ≈ 2D̄(y)− D̂(y) = DIC

Also:
D̄(y)︸ ︷︷ ︸

large is bad

+ pD︸︷︷︸
large is bad

= D̄(y) + (D̄(y)− D̂(y)) = 2D̄(y)− D̂(y) = DIC︸ ︷︷ ︸
small is good

'A model that would best predict a replicate dataset of the same structure as that currently observed'.

Example with multinomial model:

Use the following model with either small or large values for the prior parameter a, and check the
e�ective number of parameters reported in BUGS ('pD').

model{

for(i in 1:4){a[i]<-250}

p[1:4] ~ ddirch(a[1:4])

x[1:4] ~ dmulti(p[1:4],N)

N <- 100

}

data generated from p[i]=1/4,N=100:

list(x=c(26,29,19,26))

With very large a-values, most of the information is given in the prior, and posterior of p will be very
focused at where the prior says. There's not much e�ect from data, hence, the number of parameters
to estimate is e�ectively nearly zero, because we say we know the parameter values with high precision
already in the prior. But if a is very small, then the prior is uninformative, and the result is dictated
by data. In this case, all three parameters are freely in�uenced by the data, and 'pD' ≈ 3. (Note that
the fourth parameter is always determined by the sum of the rest).

DIC does not always work and should be used with caution.

For example, the manuals says:
It is important to note that DIC assumes the posterior mean to be a good estimate of the stochastic
parameters. If this is not so, say because of extreme skewness or even bimodality, then DIC may not
be appropriate!

86

8.15 Exercises

1. Compute the approximate value of π = 3.1415 . . . using the method previously described in Win-
BUGS. How many iterations are needed to get �rst 4 decimals correct?

2. Assume the model X ∼ Bin(N, 0.2), and that X = 1 was observed. Compute the posterior distri-
bution of N in WinBUGS. Try di�erent priors for N .

3. According to an expert, the sensitivity of a testing method is roughly in the range of 0.3 − 0.7.
Construct a beta prior distribution in WinBUGS that is approximately in this range.

4. Using the following data (generated from dlnorm(1,0.5)), �t dlnorm(µ, τ) and dgamma(α, β) models
in WinBUGS. You may use these priors: µ ∼N(0,0.001), τ ∼ Γ(0.001,0.001), α ∼ exp(0.001) and
β ∼exp(0.001). Another possible parametrization would be dgamma(µτ, τ) with priors µ ∼LN(0,0.001)
and τ ∼ Γ(0.001,0.001) which enables to directly model the mean µ for the gamma distribution.
Check the posterior of model parameters. Compute also predictive distribution for x and compare
predictions. Compute DIC and compare models.

list(x=c(3.162, 0.5266, 1.245, 2.679, 1.781, 2.245,

2.3, 9.147, 2.122, 12.53, 4.2, 18.95, 86.27,

15.91, 6.062, 4.757, 4.911, 1.667, 2.749, 3.101))

5. The observed life times were

X=c(1.54, 0.70, 1.23, 0.82, 0.99, 1.33, 0.38, 0.99, 1.97, 1.10,

0.40)

and there were 4 censored observations at time T = 2. Assume Xi ∼ Exp(θ) and prior θ ∼
Gamma(2, 1). Write a WinBUGS model and compute the posterior of θ. Compute also the pre-
dictive distribution for a new observation, X∗.

6. Normal model with unknown mean µ, known variance σ2. Compute in WinBUGS the posterior of
µ assuming either small or large σ. Compare the results if the prior is either mu ∼ dnorm(0,0.0001)

or mu ∼ dflat().

x=c(-0.7417224,-2.1873614,1.1508363,0.1306749,-1.1931158,0.2093445,-0.1040642)

7. Microbial samples are collected from individual animals and analyzed as pooled samples of 3 sub-
samples. (3 animal speci�c samples put together). Each pooled sample then results to either negative
or positive test. A positive result is obtained if any of the 3 sub-samples were colonized. A nega-
tive result is obtained if none of the 3 sub-samples were colonized. Assume 50 pooled samples were
analyzed and 1 was positive. Compute the posterior of pooled sample population prevalence, and
the posterior of sub-sample (animal) population prevalence, using WinBUGS. Uninformative prior of
animal prevalence can be used. What is the posterior probability that animal prevalence is >1%?
Calculate posterior of both pooled and population prevalence for all possible outcomes: 0,1,2,. . . ,50
positives in 50.

87

8. Proportion p of meals provided by a catering service are contaminated. Proportion q of consumed
contaminated meals leads to illness. Assume uniform priors for (p, q). 300 meals were served in a
conference and 5 people got sick. Compute in WinBUGS the posterior distribution of p assuming (1)
q = 0.5 is known and assuming (2) q is unknown. When both parameters are unknown, plot their
joint distribution. Extend the model with the unknown number of contaminated servings, Z, actually
served. Compute the posterior predictive distribution for the number of illnesses in another conference
with 100 people who were served the same food. Extend the model with experimental data in which
10 volunteers consumed contaminated meals and 2 of them got sick.

9. Consumers of broiler legs were given data loggers which measured the actual cooking time, t, and
temperature, T , in the oven. The data show modestly negative correlation between t and T . Explain
why this could be so. Compute the posterior distribution in WinBUGS assuming the following model
for the logarithms. Compute also predictive distribution for a 'next' consumer. What is the probability
that he/she will cook (A) less than 50 minutes, (B) over 50 min, but T > 175, (C) over 50 min, but
T ∈ [135, 175], (C) over 50 min, but T < 135? Is the model prediction realistic?[

log(t)
log(T)

]
∼ N

([
µ1

µ2

]
,

[
σ2
11 ρ σ11σ22

ρ σ11σ22 σ2
22

])

µi ∼ N(0, 0.001) σ2
ii ∼ Gamma(0.01, 0.01) ρ ∼ U(−1, 1)

Hint: use inverse() for computing the inverse covariance matrix in WinBUGS.

list(N=19, timetemp=structure(.Data=c(

43, 179,

44, 217,

47, 206,

49, 185,

49, 166,

53, 193,

53, 180,

56, 176,

58, 167,

59, 180,

61, 132,

62, 152,

62, 136,

72, 178,

73, 168,

78, 149,

84, 169,

99, 161,

105, 148),.Dim=c(19,2)))

10. In 2001, 1962 Finnish voters were asked for their favorite political party. The result was

88

SDP Kesk Kok Vihr Vas Other Total
471 453 396 243 177 222 1962
24.0 23.1 20.2 12.4 9.0 11.2 100%

Using Dir(1,1,1,1,1,1)-prior and WinBUGS, compute the posterior density of the true population per-
centage for voters of each party. What is the probability that SDP was more popular than Keskusta?

11. Based on the results of the �rst 7 competitions of Ahonen and Janda, and uninformative prior,
compute using WinBUGS the posterior probability P (µ1 > µ2 | data). Then, compute posterior
predictive distribution for the result of the last competition for both jumpers. Knowing the total
result of the �rst 3 competitions of the Four Hills Tournament, what is the probability that after the
last competition, the di�erence of total points of the Tournament will be less than one point? Try
predicting the whole Tournament, based on the four previous competitions.

12. Coal mine accidents in Britain, 1851-1962. Expand the model by using two or three change points.
Compute the results in WinBUGS and use WinBUGS graphical tools to display them.

13. Use Multinomial model with Dirichlet prior to model the 2× 2 table (Corn�eld, 1962):
Heart disease
yes no

Serum cholesterol < 260 51 992 1043
Serum cholesterol > 260 41 245 286

92 1237 1329

If the cell probabilities are written

[
p11 p12
p21 p22

]
, the odds in the low chol group is o− = [p11/(p11 +

p12)]/[1 − p11/(p11 + p12)] = p11/p12. Likewise, the odds in the high chol group is o+ = p21/p22. The
odds ratio is o+/o−. The risk ratio is RR = [p21/(p21 + p22)]/[p11/(p11 + p12)]. Compute with BUGS
the posterior distribution of odds ratio and risk ratio.

14. In the early BUGS, Gibbs samplers were thought to be coded directly by users. This is still possible
in WinBUGS! Although, models should usually be de�ned as a structure of a DAG and ideally we
should not get involved with sampling algorithm speci�cations. The whole point of WinBUGS is that
users are free from such trouble and they could concentrate on model speci�cation instead. Anyhow,
consider bivariate normal density where (µ1, µ2) and the covariance matrix C are given,

C =

[
1 ρ
ρ 1

]
.

This could be simulated directly, or by using Gibbs sampler:

X1 | X2, µ1, µ2 ∼ N(µ1 + ρ(X2 − µ2), 1− ρ2)

X2 | X1, µ1, µ2 ∼ N(µ2 + ρ(X1 − µ1), 1− ρ2)

Implement both approaches in WinBUGS and compare. Notice that any pair of distributions π(X1 |
X2) and π(X2 | X1) could thus be coded in WinBUGS, but they do not lead to a proper joint
distribution π(X1, X2) unless they are full conditional distributions that are correctly derived from the
joint distribution. For example, what's wrong with x ∼ dnorm(x,1)? Try it!

89

