- In the non-hierarchical models we simply had
 - Conditional density of data $\pi(y \mid \text{parameters})$. - Prior density of parameters $\pi(\text{parameters})$.
 - to get posterior π (parameters | y).

- In the non-hierarchical models
 - As a default, the prior is often 'noninformative'.

→ Can expect posterior mode to resemble maximum likelihood estimate, since we basically "normalize the likelihood function" to become a probability density:

 π (parameters|y)= π (y| parameters)×"1"/const.

 \rightarrow not utilizing the full potential of Bayesian models, unless we elicit informative priors?

• In the non-hierarchical models

 Informative priors can be laborious to get, although may be essential ingredient in some problems. (e.g. expert opinions).

"Empirical Bayes": draw the informative priors from data

• "Prior" data should be independent of the "actual" data, to avoid using same data twice.

• With hierarchical data (groups within groups)

– Natural idea to borrow strength from rest of the groups, to support weak data in some groups \rightarrow add hyperprior to the model to make it hierarchical.

 Accomplishes the effect of informative prior, but over whole hierarchical structure, based on conditional independency.

 \rightarrow extremely versatile approach to many "hard problems" where data are unbalanced, partially missing, etc, but where the total information can help "filling the gaps".

 \rightarrow Bayesian "information synthesis".