Intro2 in nutshell

Using posterior distribution $\pi(\theta|\text{data})$:

- Summarizes current uncertainty about unknown quantities θ , given observed (hence fixed) data.
- Can be approximated by histogram of simulated sample $\theta_1, \dots, \theta_n$.
- Likewise, posterior mean is approximated as the average $\Sigma \theta_i/n$.
- Posterior mean of any function $g(\theta)$ is approximated as $\Sigma g(\theta_i)/n$.

Intro2 in nutshell

• Can be used to compute $P(H_0 | data)$, when H_0 is expressed as a function of θ . From simulated posterior distribution: $P(H_0 | data) \approx (\# \text{ iterations } H_0(\theta_i) \text{ is true})/n.$

• Bayesian **Credible Intervals** (CI) for summaries of the uncertainty width. From simulated posterior: sort the sample $\theta_1, ..., \theta_n$, take 2.5% of the smallest values, 2.5% of the largest values out, to get 95% credible interval. For HPD interval, you need to sort with respect to posterior density values $\pi(\theta_1 | \text{data}), ..., \pi(\theta_n | \text{data})$ and take out 5% of the smallest.

• **Posterior predictive distributions**. From simulated posterior, generate predicted observation X_i from $\pi (X_i | \theta_i)$ for each θ_i .

Intro2 in nutshell

- Monte Carlo simulations: iid samples from the target density.
 - -Efficient if every sample is drawn from the target density.

-Rejection samplers: iid sampling, but only some draws are accepted.

• MCMC simulations: dependent samples from the target density. Need to check convergence.

-If full conditionals can be solved \rightarrow Gibbs, every draw is accepted in 'alternating sampling'.

–More generally: MH-algorithm with proposal density, but acceptance rate should not be too high, nor too low.

-Single site updating vs. block updating.