
1. Run the BUGS model(s) of example 'Seeds' from WinBUGS manual, examples volume I. Compute
the same model using hierarchical centering as explained in the example.

2. Below is a Poisson log-linear model for the Danish lung cancer data with STZ constraints. Com-
pute posterior estimates for the intercept which now represents overall mean. Then replace the
age and city main e�ects ('�xed/constant e�ects') by random ('varying') e�ects ui ∼ N(0, σ2

a) and
vj ∼ N(0, σ2

c ) (i = 1, . . . , 6, j = 1, . . . , 4). Priors for variance components could be σa ∼ U(0, 1000)
and σc ∼ U(0, 1000), and a �at prior for µ ∼ N(0, 0.001). The means are then log(λk) = µ + uik + vjk

,
k = 1, . . . , 24. This is identi�able since σa and σc will not allow in�nitely large positive or negative
random e�ects. (In comparison, the main e�ects had basically �at prior). Parameter µ represents
the overall mean in random e�ects model, comparable to the intercept in STZ ANOVA model. These
random e�ects are unstructured. Construct structured random e�ects for age groups by assuming
uj+1 ∼ N(uj, σ

2
a). From the random e�ects model we could generate predictions for 'another Danish

city' by generating v∗ ∼ N(0, σ2
c ). And if we had completely missing age group in all cities, this could

be predicted by generating u∗ either as an unstructured random e�ect (describing variation between
age groups) or as a structured random e�ect (describing variation between successive age groups). The
latter would draw information both from the previous and the next age group since u∗i would depend
on the previous ui−1 whereas the next ui+1 would depend on u∗i .

http://www.sci.usq.edu.au/staff/dunn/Datasets/glms/poisson/danishlc.html

model{
for(i in 1:24){
cases[i] ~ dpois(mu[i]); group[i] <- i
mu[i] <- pop[i]*4*lambda[i] # lambda = incidence per year
LA[i] <- lambda[i]/100000 # LA = incidence per 100000 per year
log(lambda[i]) <- inprod(alpha[],X[i,])
X[i,1] <- 1
for(k in 2:6){X[i,k] <- equals(age[i],k)-equals(age[i],1)} # STZ
for(k in 2:4){X[i,k+5] <- equals(city[i],k)-equals(age[i],1)}# STZ
}
for(k in 1:9){alpha[k] ~ dnorm(0,0.001);A[k] <- exp(alpha[k])}
}
# inits:
list(alpha=c(0,0,0,0,0,0,0,0,0))

cases[] pop[] age[] city[]
11 3059 1 1
11 800 2 1
11 710 3 1
10 581 4 1
11 509 5 1
10 605 6 1
13 2879 1 2
6 1083 2 2
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15 923 3 2
10 834 4 2
12 634 5 2
2 782 6 2
4 3142 1 3
8 1050 2 3
7 895 3 3
11 702 4 3
9 535 5 3
12 659 6 3
5 2520 1 4
7 878 2 4
10 839 3 4
14 631 4 4
8 539 5 4
7 619 6 4
END

3. Assume the true disease incidence varies over a number of geographical regions i, e.g. i = 1, . . . , 100.
To make your own data, generate these true values λi from Gamma(5, 1000). Then, for each generated
λi, generate the actual disease count Xi for each region from Poisson(Niλi), assuming the exposure
(population count) is Ni = i × 10. Now, you know the 'true values', and you have 'observed data'.
Compute the observed incidences λ̂i = Xi/Ni and plot them as a function of population size. Ob-
serve how these behave when Ni is small. Compute the posterior distribution of all λi assuming the
prior λi ∼ Gamma(α, β), α ∼ Exp(0.01), β ∼ Exp(0.01). (You might also try the log-linear model,
employing normal prior density). Compute the posterior medians and 95% CIs and compare them
with the observed incidences, λ̂i, as a function of population size. In similar applications, it might be
interesting to study urban-rural e�ects. The 'true incidence' λi might then be a function of population
size. (Simulated data could be done for this too). When estimating log(λi) we could then assume a
prior log(λi+1) ∼ N(log(λi), σ

2) to incorporate smoothness over urban-rural continuum. This would
help estimating λi also when the corresponding Xi might be missing.

model{
for(i in 1:100){
N[i] <- i*10
x[i] ~ dpois(par[i]); xpred[i] ~ dpois(par[i])
par[i] <- lambda[i]*N[i]
lambda[i] ~ dgamma(a,b)
laobs[i] <- x[i]/N[i]
}
a ~ dexp(0.01); b~dexp(0.01)
}
list(x=c(0,0,3,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,1,1,0,1,
0,0,2,0,1,3,0,3,3,2,3,2,1,1,5,3,2,4,2,4,3,5,3,3,2,2,0,4,
2,2,2,3,2,2,7,5,1,1,0,3,3,3,3,10,4,0,5,6,1,2,1,6,2,3,5,
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3,1,1,7,8,7,2,6,9,4,3,3,3,3,7,8,10,4,2,8,2,3))
#,lambdatrue=c(0.006189,0.005392,0.007482,0.002101,0.00404,0.004104,
0.002443,0.003522,0.00304,0.003879,0.006207,0.005146,
0.007665,0.006171,0.006467,0.004278,0.004247,0.003849,
0.006132,0.006311,0.004918,0.007915,0.006253,0.0028,
0.00269,0.002432,0.004463,0.00487,0.004416,0.005386,
0.003095,0.004779,0.003521,0.003467,0.005463,0.002086,
0.001188,0.004572,0.006427,0.007555,0.006153,0.002609,
0.005903,0.005654,0.008799,0.007592,0.004678,0.003258,
0.003312,0.002201,0.005663,0.002479,0.004547,0.00375,
0.003309,0.002688,0.006507,0.009398,0.01047,0.006518,
0.001765,0.002879,0.004183,0.003772,0.003067,0.002954,
0.01264,0.006287,0.002936,0.006267,0.00689,0.003587,
0.002659,0.003542,0.004375,0.001684,0.003801,0.006977,
0.002438,0.001452,0.003746,0.007303,0.01207,0.003909,
0.002182,0.006481,0.006271,0.004222,0.006121,0.002793,
0.003799,0.004475,0.008524,0.007171,0.006329,0.003326,
0.001944,0.006952,0.003755,0.003938) )

Note that the easiest way to generate the data is to use R or other similar program and then import
it to WinBUGS. (Alternatively, de�ne just the data model with your given parameters in WinBUGS,
run for some iterations, and select the values from some single iteration step, using 'coda'-button, and
copy-paste).

4. Compute the Eyes example from WinBUGS examples Vol II. The data are also given below. Since
the model assumes a mixture of two distributions, take a look at the data histogram �rst to see if
this is plausible model. In R you can do this by hist(x) or by computing a nonparametric density
estimate plot(density(x)). Check also the suggested other parametrization, and the possibility of
having no members in the second component distribution.

x<-c(29.0, 30.0, 32.0, 33.1, 33.4, 33.6, 33.7, 34.1, 34.8,
35.3, 35.4, 35.9, 36.1, 36.3, 36.4, 36.6, 37.0, 37.4, 37.5,
38.3, 38.5, 38.6, 39.4, 39.6, 40.4, 40.8, 42.0, 42.8, 43.0,
43.5, 43.8, 43.9, 45.3, 46.2, 48.8, 48.7, 48.9, 49.0, 49.4,
49.9, 50.6, 51.2, 51.4, 51.5, 51.6, 52.8, 52.9, 53.2)
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