STOCHASTIC POPULATION MODELS

EXERCISES 10-15

10.

Consider the Wiener process $\{W(t)\}_{r\geq 0}$ with W(0) = 0. Show that $\mathcal{E}\{W(t)W(s)\} = \min\{t, s\}$

11.

Integrate the linear stochastic differential equation dX = g(t)dW with $X(0) = x_0$. Show that it doesn't matter how we sample the integrant, and so, in particular, it doesn't matter whether we interpret the differential equation as an Ito equation or a Stratonovitch equation.

12.

Integrate the following stochastic differential equations with deterministic initial condition $X(0) = x_0$ for suitable choice of x_0 :

(a)
$$dX = X^2 dW$$
 (S)
(b) $dX = e^{-t}X dW$ (S)
(c) $dX = -X dt + X dW$ (I)

13.

Given the stochastic processes $\{X(t)\}$ and $\{Y(t)\}$ and the constants a and b, define Z(t) := aX(t) + bY(t), and show that the auto-covariance function of Z is $C_{Z,Z} = a^2 C_{X,X} + ab C_{X,Y} + ab C_{Y,X} + b^2 C_{Y,Y}$.

14.

Given the stochastic processes $\{X(t)\}\$ and $\{Y(t)\}\$ show that Moreover, one has

(a) $C_{\frac{dX}{dt},Y} = +C'_{X,Y}$ (b) $C_{X,\frac{dY}{dt}} = -C'_{X,Y}$ (c) $C_{\frac{dX}{dt},\frac{dY}{dt}} = -C''_{X,Y}$

where $C'_{X,Y}$ and $C''_{X,Y}$ are the first- and second-order derivatives of the cross-covariance function $C_{X,Y}(\tau)$ with respect to τ .

15.

Calculate the spectral density and (if possible) the auto-covariance of $\theta(t)$ defined by the following equations:

(a)
$$d\theta = -a\theta \, dt + b \, dW$$

(b) $d\theta = -a\theta_{\Delta t} \, dt + b \, dW$ where $\theta_{\Delta t}(t) := \theta(t - \Delta t)$
(c) $\theta = \frac{1}{\Delta t} \int_{t-\Delta t}^{t} dW$
(d) $\theta = a \int_{-\infty}^{t} e^{-a(t-s)} \xi(s) ds$ where $\xi(t)$ is the Gaussian white noise
(e) $\theta = \frac{1}{\Delta t} \int_{t-\Delta t}^{t} \eta(s) ds$ where $d\eta = -\eta \, dt + dW$
for positive *a* and *b*.

 $\mathbf{2}$