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9. Fokker-Planck approximation for semi-large systems

9.1. System size. Consider the birth-death process with birth and death rates Bn and
Dn and probability distribution Pn satisfying

(1)
dPn
dt

= Bn−1Pn−1 +Dn+1Pn+1 − (Bn +Dn)Pn ∀n ≥ 0

We introduce the notion of system size as the total area or volume in which the popu-
lation lives. Given system size Ω and population size n, the population density is n/Ω.
The objective is to re-write system (1) in terms of population density and see what is
the effect of increasing the system size. To this end we make the following change of
variables:

ε = Ω−1(2)

x = εn(3)

εp(t, x) = Pn(t)(4)

b(x)/x = Bn/n(5)

d(x)/x = Dn/n(6)

(Note, that b(x)/x and d(x)/x are the per capita birth and death rates as functions of
population density rather than population number. These are more natural objects than
the Bn and the Dn in the sense that if we derive a population model using the law of
mass-action, then we directly get expressions for b(x)/x and d(x)/x. As a second step,
these can be translated into the Bn and the Dn as Bn = b(εn)/ε and Dn = d(εn)/ε.
Also note that system size has no effect on the linear birth-death process.)

Re-writing system (1) in terms of the new variables we get

(7) ε
∂p(t, x)

∂t
= b(x− ε)p(t, x− ε) + d(x+ ε)p(t, x+ ε)−

(
b(x) + d(x)

)
p(t, x)

Taylor-expansion for small ε gives

(8)
∂p

∂t
= −∂(b− d)p

∂x
+

1

2
ε
∂2(b+ d)p

∂x2
+ O(ε2)

1
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Letting ε→ 0 this converges point-wise for each fixed x to

(9)
∂p

∂t
= −∂(b− d)p

∂x

which is known as the transport equation corresponding to the deterministic population
model

(10)
dx

dt
= b(x)− d(x)

In other words, if we increase the system size (i.e., the area or volume in which the pop-
ulation lives) while keeping the population density constant, we lose the demographic
stochasticity and eventually are left with a pure deterministic population model.

9.2. Semi-large systems. Instead of taking the limit ε → 0 in equation (8) we can
simply take any small ε > 0 and ignore the O(ε2) terms. This gives us the Fokker-Planck
approximation of the birth-death process for semi-large systems (i.e., systems that are
large but still have a finite area or volume):

(11) ∂tp = −∂x(µp) +
ε

2
∂2
x(σ2p)

where

µ(x) := b(x)− d(x)(12)

σ2(x) := b(x) + d(x)(13)

To understand the meaning of the µ(x) and the σ2(x), recall from section 8.1 that the
probability of a single birth event during ∆t time is Bn∆t+O(∆t)2. In terms of the new
variables this is ε−1b(x)∆t+ O(∆t)2 and gives a change in population density from x at
time t to x+ ε at time t+ ∆t. Likewise, the probability of a single death event during
∆t time is Dn∆t + O(∆t)2. In terms of the new variables this is ε−1d(x)∆t + O(∆t)2

and gives a change in population density from x at time t to x − ε at time t + ∆t. So,
the average change in x per ∆t time is

(14)
E{∆x}

∆t
= b(x)− d(x) + O(∆t) −→ µ(x)

as ∆t→ 0. Likewise, the variance of the change in x per ∆t time is

(15)
E{∆x2} − E{∆x}2

∆t
= ε
(
b(x) + d(x)

)
+ O(∆t) −→ εσ2(x)

as ∆t → 0. So, µ(x) is the average change in x per unit of time, also called the
(deterministic) drift, and εσ2(x) is the variance of the change in x per unit of time. In
particular, notice that the variance of the change in x per unit of time is proportional
to ε.

The Fokker-Planck approximation (11) relates to the stochastic differential equation

(16) dx = µ(x)dt+
√
εσ2(x) dW (Ito)

in the same way as the transport equation (9) relates to the deterministic equation (10).
That is, both the Fokker-Planck equation and the transport equation describe how the
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probability distribution of x at a given time changes with time, while both the deter-
ministic equation (10) and the stochastic equation (16) describe a single orbit or sample
path across time.

9.3. Quasi-stationary distribution. To study the quasi-stationary distribution in a
semi-large system, we approximate the nonlinear SDE (16) by a linear SDE centered at
the deterministic equilibrium, x̄, which we get from the equation

(17) µ(x̄) = 0

To guarantee deterministic stability we assume that

(18) µ′(x̄) < 0

Linearization of the SDE (16) gives

(19) d(x− x̄) = µ′(x̄)(x− x̄)dt+
√
εσ2(x̄) dW

which defines the Ornstein-Uhlenbeck process. So, the stationary distribution of x will
be approximately Gaussian

(20) x ∼ N
(
x̄,

εσ2(x̄)

2|µ′(x̄)|

)
with auto-covariance

(21) C(τ) =
εσ2(x̄)

2|µ′(x̄)|
e−|τµ

′(x̄)|

and spectral density

(22) S(ω) =
εσ2(x̄)

ω2 + µ′(x̄)2

The approximation will improve towards smaller values of ε because the diffusion term
in (19) becomes smaller and the population will stay closer to the deterministic equilib-
rium.

9.4. Example. Consider the SIS-model in which “S” denotes an uninfected (but “sus-
ceptible”) individual and “I” an infected individual, and consider the following pro-
cesses:

(23)
S + I

β−→ 2 I (transmission)

I
δ−→ S (recovery)

The first “reaction” represents the transmission of an infection from an infected person
to an uninfected person through direct contact. The second “reaction” represents the re-
covery of an infected individual but without acquiring immunity. Applying the principle
of mass-action (see section 1.5) this gives the following population equations:

(24)


dx
dt = +βxy − δx

dy
dt = −βxy + δx
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where x and y denote the population densities of I and S, respectively. The total popu-
lation density x+y =: k stays constant, which is used to write y = k−x in the equation
for x, which leaves us with

(25)
dx

dt
= βx(k − x)− δx (0 ≤ x ≤ k)

The dynamics are straightforward: if βk ≤ δ, we have that x → 0 as t → 0 (i.e., the
infection dies out); if βk > δ, we have that x→ x̄ as t→ 0 where

(26) x̄ := k − δ

β
∈ (0, k)

(i.e., the infection spreads and reaches an equilibrium).

Figure 1. Dynamics in the SIS model.

From equation (25) we see immediately that

(27)
b(x) := βx(k − x)
d(x) := δx

are the rates of recruitment and recovery (i.e., the “birth” and “death” rates) of infected
individuals as functions of population density. Using the new variables in definition (2)
we can translate these rates into the birth and death rate for a finite population:

(28)
Bn = b(εn)/ε = βn(k − εn)
Dn = d(εn)/ε = δn

where ε is the inverse of the system size. This allows us to calculate the quasi-stationary
distribution and the expected extinction time in a finite populations as we did in sections
8.4 and 8.5.

Figure 2. Quasi-stationary distribution P cn for β = 2, δ = 1, k = 1 and
ε = 0.1, and so the maximum population size is k/ε = 10.
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We can calculate the expected time till extinction of the infection as a function of system
size Ω := ε−1 by first calculating the stationary distribution P cn and next the expected
extinction time τE := (D1P

c
1 )−1 for several values of ε:

Figure 3. Extinction time τE as a function of system size Ω. (Note the
logarithmic scale on the vertical axis.)

It can be seen that τE increases exponentially with system size Ω. For a system size Ω =
40 the expected time till extinction is already as large as τE ≈ 104 times the typical length
1/δ of an individual infection, and for Ω = 100 this has become τE ≈ 108. If we think of
an infection with a typical recovery time of 14 days, then the expected time till extinction
(due to demographic stochasticity) in a populations of forty individuals, or a hundred
individuals, is approximately 380 years or 3.8 million years, respectively. The point is
that random extinction very rapidly becomes a negligible phenomena as the system size
increases. Even fairly small systems can have very long extinction times.

How important are demographic fluctuations in a population of a size where random
extinction has already become negligible? To answer that question we use the Fokker-
Plank approximation

(29) ∂tp = −∂x[(b− d)p] +
1

2
∂2
x[ε(b+ d)p]

with the corresponding SDE

(30) dx = (b− d)dt+
√
ε(b+ d)dW (Ito)

where b(x) = βx(k − x) and d(x) = δx.

The figure below gives a sample path of the SDE starting at the population equilibrium
x̄ for Ω = 100 but otherwise the same parameter values as in the previous figures. It can
be seen that in spite of the negligibility of random extinction, the demographic noise
is significant. Apparently, there is a range of system sizes where random extinction is
negligible but where random fluctuations in population density are still significant.

To understand how it is possible that such a range of system sizes can exist, we note that
the expected time till extinction increases exponentially with system size (see previous
figure) while the standard deviation of the stationary distribution decreases slowly as
the inverse of the square-root of the system size (see equation (20)).
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Figure 4. Sample path of the SDE for β = 2, δ = 1, k = 1 and ε = 0.01
about the deterministic equilibrium x̄ (thick dashed line).

The following figure gives the stationary probability distribution of the population den-
sity observed in a single sample path of the nonlinear SDE integrated over ten thousand
time units (i.e. ten thousand times the average recovery time 1/δ), together with the
theoretical prediction using the approximating distribution (20) obtained from the linear
SDE (19). The somewhat smaller average of the observed distribution compared to that
of the predicted distribution is due to the concavity of the drift b(x)− d(x) (see Figure
1) and Jensen’s inequality.

Figure 5. Stationary distribution observed in a single sample path (his-
togram) compared with the predicted appriximate distribution (20) (con-
tinuous distribution) for β = 2, δ = 1, k = 1 and ε = 0.01.

Finally, we calculate the probability of invasion of the infection in an uninfected popu-
lation if introduced at very low initial numbers. This was done by counting the number
of successful invasions in a sample of one hundred sample paths for each initial number.
The observed invasion probabilities coincide well with the probability of invasion

(31) Prob(invasion | initial number is n) = 1−
(
δ

βk

)n
as predicted by the linear birth-death process (see equation (19) in section 8.3).
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Figure 6. The probability of invasion as a function of initial number
of infected individuals as observed in a sample of 100 sample paths of
the nonlinear SDE (dots) and as predicted from the linear birth-death
process (dashed) for β = 2, δ = 1, k = 1 and ε = 0.01.


