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0. Outline

These lectures are concerned with the following objects:
Spaces: A weight (function) 0 < w ∈ L1

loc(Rn) is identified with the positive measure
(denoted by the same symbol)

w(E) :=
ˆ
E

w(x) dx.

We consider the weighted Lp space

Lp(w) :=
{
f measurable : ‖f‖Lp(w) :=

(ˆ
Rn
|f(x)|pw(x) dx

)1/p

<∞
}
,

and its weak version

Lp,∞(w) :=
{
f measurable : ‖f‖Lp,∞(w) := sup

t>0
t · w({|f | > t})1/p <∞

}
,

where {|f | > t} := {x ∈ Rn : |f(x)| > t}. Note that ‖f‖Lp,∞(w) ≤ ‖f‖Lp(w).
Operators: The operators of interest are the usual ones from Real and Harmonic Analysis.

The main examples are the Hardy–Littlewood maximal operator

Mf(x) := sup
Q

1Q(x)
1
|Q|

ˆ
Q

|f(y)|dy

and the Hilbert transform

Hf(x) := lim
ε→0

1
π

ˆ
|x−y|>ε

f(y) dy
x− y

.

Note that the integrations involved in these operators are with respect to the Lebesgue
measure, not with respect to the weighted measure w, yet we want to consider the action
of these operators on functions f ∈ Lp(w). The presence of these integrations with respect
to different measures is the main difficulty of the weighted theory.

Questions: The main questions of the weighted theory are of the following three types:
(1) Given an operator T ∈ {M,H, . . .} and an exponent p, under what conditions on the

weight w is it true that

‖Tf‖Lp(w) ≤ C‖f‖Lp(w) or ‖Tf‖Lp,∞(w) ≤ C‖f‖Lp(w)

for some C = C(T, p, w) which is independent of f ∈ Lp(w)? This is the qualita-
tive one-weight question, which is fairly well understood after the contributions of
Muckenhoupt, Hunt, Wheeden, Coifman, Fefferman. . . in the 1970s.

(2) Assuming we know the answer to the first question, how exactly does the constant C
depend on w? This is the quantitative one-weight question, whose study was started
by Buckley’s investigation of M in the 1990s, and has been continued by Petermichl,
Volberg, Lerner, Ombrosi, Pérez, Lacey. . . in the 2000s.
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(3) Repeat the first question with different weights u and v on the left and right side of
the inequality. For M , a characterization was obtained by Sawyer in the 1980s, but
for singular integral operators only different sufficient conditions are known. Already
for H, a complete understanding is still missing, despite a number of deep recent
contributions to the problem.

The emphasis of these lectures is on the quantitative one-weight theory. Only restricted
aspects of the two-weight theory will appear from time to time.

Framework: Instead of directly working with the classical operators T ∈ {M,H, . . .}, we
will most of the time consider certain simpler models, so-called dyadic operators. However,
as it turns out, the model is sufficiently rich, so that we can recover the original classical
operators by means of appropriate averages of the dyadic operators.

1. Maximal function estimates

1.1. Abstract dyadic cubes. Let D be a countable collection of measurable subsets of Rn (we
could consider more general measure spaces) with the following property:

∀Q,R ∈ D : Q ∩R ∈ {Q,R,∅}. (1.1)

We will refer to the elements of D as the dyadic cubes. The main example to keep in mind is the
standard dyadic cubes given by

D = {2−k
(
[0, 1)n +m

)
: k ∈ Z,m ∈ Zn}.

However, many of the basic results are valid assuming only the abstract dyadic structure as
postulated by (1.1).

An important principle related to dyadic cubes is the following. It is the dyadic counterpart of
the more complicated covering arguments of Classical Analysis.

Lemma 1.1 (Dyadic covering lemma). Let Q ⊆ D be a finite collection. Let Q∗ be the maximal
cubes in Q: all R ∈ Q which are not strictly contained in any bigger Q ∈ Q. Then every Q ∈ Q
is contained in some Q ∈ Q∗ and ⋃

R∈Q∗

R =
⋃
Q∈Q

Q.

The elements of Q∗ are pairwise disjoint.

(Often, the same maximality argument also works even when there are infinitely many cubes,
but here it is particularly obvious.)

Proof. Let Q ∈ Q; we want to prove that Q ⊆ R for some R ∈ Q∗. If Q is maximal, then
Q ⊆ Q ∈ Q∗. If not, then by definition Q ( Q′ for some Q′ ∈ Q. If Q′ is maximal, then we are
done. If not, then Q ( Q′ ( Q′′ for some Q ∈ Q, and we check if Q′′ is maximal or not. Since Q
is finite, this chain of cubes must terminate after finitely many steps.

To see the equality of the unions, note that ⊆ is clear, since Q∗t ⊆ Qt by definition. And ⊇
follows from the previous paragraph: any Q ∈ Qt is contained in some R ∈ Q∗t .

For disjointness, consider two different Q,Q′ ∈ Q with Q ∩Q′ 6= ∅. By (1.1), this means that
Q ∩ Q′ ∈ {Q,Q′}, that is, one of the cubes contains the other. Hence the contained cube is not
maximal, thus not in Q∗. �

1.2. The dyadic maximal operator. We consider the maximal operator given by

Mf(x) := sup
Q∈D

1Q(x)
1
|Q|

ˆ
Q

|f |dy,

or with respect to another measure µ:

Mµf(x) := sup
Q∈D

1Q(x)
1

µ(Q)

ˆ
Q

|f |dµ.
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The integral average will be often abbreviated as

〈f〉Q :=
 
Q

f dy :=
1
|Q|

ˆ
Q

f dy,

or with respect to other measures:

〈f〉µQ :=
 
Q

f dµ :=
1

µ(Q)

ˆ
Q

f dµ.

1.3. Universal maximal function estimates. A fundamental property of the dyadic maximal
function is the following set of estimates: the maximal function Mµ is always bounded on Lp(µ)
for the same µ. The problems only arise when we insist on the boundedness of M ( dµ = dx) on
Lp(w) ( dµ′ = w dx).

Theorem 1.1. We have the estimates

‖Mµf‖Lp(µ) ≤ p′‖f‖Lp(µ), p ∈ (1,∞],

t · µ({Mµf > t}) ≤
ˆ
{Mµf>t}

|f |dµ ≤ ‖f‖L1(µ).

Proof. We make the following approximation argument, which is often handy also later on: We
may assume that the collection D is finite. Indeed, since D is countable, we have D = {Qi}∞i=1.
Let Dk := {Qi}ki=1, and let Mµ

k be the maximal function related to Dk in place of D . Then
Mµ
k f ↑Mµf as k →∞. Assuming we can prove the finite case, we have

t · µ({Mµ
k f > t}) ≤

ˆ
{Mµ

k f>t}
|f |dµ ≤

ˆ
{Mµf>t}

|f |dµ

for all k ∈ N. But the left side converges to t·µ({Mµf > t}) as k →∞. The bound for ‖Mµf‖Lp(µ)

also follows from that of ‖Mµ
k f‖Lp(µ) by dominated convergence, for p ∈ (1,∞). (For p =∞, the

bound is immediate, since clearly Mµf ≤ ‖f‖L∞(µ).)
With D finite, consider first the weak-type estimate. Let f ≥ 0, without loss of generality

(think why!). By definition, there holds Mµf(x) > t if and only if 〈f〉µQ > t for some Q 3 x, and
in this case Mµf > t at all points of Q. Let Qt := {Q ∈ D : 〈f〉µQ > t}. Then

{Mµf > t} =
⋃

Q∈Qt

Q.

Let Q∗t be the maximal cubes in Qt, thus they are pairwise disjoint. Hence

µ({Mµf > t}) = µ
( ⋃
Q∈Qt

Q
)

= µ
( ⋃
Q∈Q∗t

Q
)

=
∑
Q∈Q∗t

µ(Q)

≤
∑
Q∈Q∗t

1
t

ˆ
Q

f dµ =
1
t

ˆ
S

Q∗t

f dµ =
1
t

ˆ
{Mµf>t}

f dµ.

We turn to the Lp estimate for p ∈ (1,∞). Recall the useful formulaˆ
Ω

|f |p dµ =
ˆ ∞

0

ptp−1µ({|f | > t}) dt. (1.2)

Then

‖Mµf‖pLp(µ) =
ˆ ∞

0

ptp−1µ({Mµf > t}) dt ≤
ˆ ∞

0

ptp−2

ˆ
{Mµf(x)>t}

|f(x)|dµ(x) dt

=
ˆ

Rn

ˆ Mµ(x)

0

ptp−1 dt|f(x)|dµ(x) =
ˆ

Rn

p

p− 1
(Mµf(x))p−1|f(x)|dµ(x).

We apply Hölder’s inequality with exponents p′ and p, observing that (p− 1)p′ = p, to deduce

‖Mµf‖pLp(µ) ≤ p
′‖Mµf‖p−1

Lp(µ)‖f‖Lp(µ).
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The claim follows, in principle, after dividing by ‖Mµf‖p−1
Lp(µ). The only problem is to make sure

that this factor is not infinite. But this is easy for a finite D ; we only need to check that each
1Q

ffl
Q
f dµ belongs to Lp(µ) (as Mµ is the maximum of finitely many such functions). And we

have∥∥∥1Q
 
Q

f dµ
∥∥∥
Lp(µ)

= µ(Q)1/p 1
µ(Q)

ˆ
Q

f dµ ≤ µ(Q)1/p 1
µ(Q)

‖f‖Lp(µ)µ(Q)1/p′ = ‖f‖Lp(µ).

This completes the proof. �

1.4. First weighted inequalities. By a simple variant of the proof of the universal maximal
function estimate, we obtain the following boundedness property of the unweighted M :

Proposition 1.1 (Fefferman–Stein 1971 [7]).

t · w({Mf > t}) ≤
ˆ
{Mf>t}

|f |Mw ≤ ‖f‖L1(Mw).

Proof. We may again assume that D is finite to start with, and f ≥ 0. Let Qt := {Q ∈ D :
〈f〉Q > t}, and Q∗t consist of the maximal elements of Qt. Then

w({Mf > t}) =
∑
Q∈Q∗t

w(Q) =
∑
Q∈Q∗t

w(Q)
|Q|
|Q| ≤

∑
Q∈Q∗t

inf
Q
Mw · 1

t

ˆ
Q

f ≤ 1
t

∑
Q∈Q∗t

ˆ
Q

f Mw

=
1
t

ˆ
S

Q∗t

f Mw =
1
t

ˆ
{Mf>t}

f Mw. �

The previous result gave the boundedness of M : L1(Mw) → L1,∞(w) between different
weighted spaces. It also provides an immediate sufficient condition for M : L1(w)→ L1,∞(w):

1.5. Muckenhoupt’s class A1. A weight belongs to the class A1 if

[w]A1 := ess sup
Mw

w
<∞.

The condition can be formulated in various ways: Using the definition of the maximal function,
it says that for a.e. x, for all dyadic Q 3 x, we have 〈w〉Q ≤ [w]A1w(x). Since there are only
countably many Q ∈ D , the union of the null sets in “a.e.” above is also a null set, and we may
permute “a.e. x” and “all Q” to the result that: for all dyadic Q, for a.e. x ∈ Q, there holds
〈w〉Q ≤ [w]A1w(x), and yet in other words:

〈w〉Q ≤ [w]A1 ess inf
Q

w ∀Q ∈ D .

This is often applied in the inverted form

ess sup
Q

1
w
≤ [w]A1

1
〈w〉Q

∀Q ∈ D .

Corollary 1.1.
t · w({Mf > t}) ≤ [w]A1‖f‖L1(w).

Proof. This is immediate from Proposition 1.1 and the definition of [w]A1 . �

Remark 1.1 (The Muckenhoupt–Wheeden conjecture). Proposition (1.1) motivated the following
analogous Muckenhoupt–Wheeden conjecture for the Hilbert transform:

‖Hf‖L1,∞(w) ≤ C‖f‖L1(Mw),

with C independent of f and w. If true, this would imply the weak Muckenhoupt–Wheeden
conjecture

‖Hf‖L1,∞(w) ≤ C[w]A1‖f‖L1(w),

again with C independent of f and w.
These remained open for a long time. In 2010, counterexamples by Reguera, Thiele, Nazarov,

Reznikov, Vasyunin and Volberg [20, 22, 23] show that both conjectures are false.
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As it turns out, the A1 condition is precisely what is needed for the weighted weak-type L1

bounds of the maximal function:

Proposition 1.2.
‖M‖L1(w)→L1,∞(w) = [w]A1 .

Proof. We already proved ≤, so let us consider ≥. Denote N := ‖M‖L1(w)→L1,∞(w), and note first
that

w({Mf ≥ t}) = lim
ε→0

w({Mf > (1− ε)t}) ≤ lim
ε→0

N

(1− ε)t
‖f‖L1(w) =

N

t
‖f‖L1(w).

Fix Q ∈ D and consider an f = f1Q ≥ 0 in L1(w). Then Mf ≥ 〈f〉Q on all of Q, and hence

w(Q) ≤ w({Mf ≥ 〈f〉Q}) ≤
N

〈f〉Q
‖f1Q‖L1(w).

The special case of f = 1E with E ⊆ Q gives w(Q) ≤ Nw(E)/〈1E〉Q, that is

w(Q)
|Q|

≤ N w(E)
|E|

.

We further specialize to E := {x ∈ Q : w(x) < ess infQ w + ε}, which has positive measure by
definition of ess inf. Then

w(Q)
|Q|

≤ N w(E)
|E|

=
N

|E|

ˆ
E

w dx ≤ N

|E|

ˆ
E

(ess inf
Q

w + ε) dx = N(ess inf
Q

w + ε).

As ε→ 0, this gives by our reformulation of the A1 condition that [w]A1 ≤ N . �

1.6. The Ap classes. With the boundedness of M : L1(w) → L1,∞(w) for w ∈ A1, it would
be reasonably straightforward to see that the A1 condition is also sufficient for the boundedness
of M : Lp(w) → Lp(w) for p > 1. However, this condition is stronger than necessary for this
estimate, and there is instead another condition Ap adapted to each p:

Proposition 1.3.

‖M‖pLp(w)→Lp,∞(w) = [w]Ap := sup
Q∈D

( 
Q

w dx
)(  

Q

w−1/(p−1) dx
)1/p

, p ∈ (1,∞).

Proof. The estimate ≤ can be proven by an adaptation of the proof of Proposition 1.1, and is left
as an exercise. Let us prove ≥. Let again f = f1Q ≥ 0 be in Lp(w), and observe that Mf ≥ 〈f〉Q
on the cube Q. Let N := ‖M‖Lp(w)→Lp,∞(w). Hence

w(Q) ≤ w({Mf ≥ 〈f〉Q}) ≤
Np

〈f〉pQ

ˆ
Q

fpw dx,

and reorganizing,
w(Q)
|Q|

( 1
|Q|

ˆ
Q

f dx
)p
≤ Np 1

|Q|

ˆ
Q

fpw dx.

We would like to choose f so that f = fp on Q, i.e., f = w−1/(p−1)1Q. The problem is that, a
priori, it is not clear that f ∈ Lp(w). So we choose f := (w + ε)−1/(p−1)1Q instead, which is a
bounded function. Substituting back, and estimating w ≤ w + ε on the right,

w(Q)
|Q|

( 1
|Q|

ˆ
Q

(w + ε)−1/(p−1) dx
)p
≤ Np 1

|Q|

ˆ
Q

(w + ε)−p/(p−1)(w + ε) dx,

where (w + ε)−p/(p−1)(w + ε) = (w + ε)−1/(p−1). Dividing out the common factor, it follows that

w(Q)
|Q|

( 1
|Q|

ˆ
Q

(w + ε)−1/(p−1) dx
)p−1

≤ Np,

and letting ε→ 0 concludes the argument. �
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1.7. Comparison of the Ap classes; the class A∞. Let us introduce the local Ap characteristics

A1(Q,w) := 〈w〉Q ess sup
Q

w−1, Ap(Q,w) := 〈w〉Q〈w−1/(p−1)〉p−1
Q (p ∈ (1,∞)),

so that [w]Ap = supQ∈D Ap(Q,w) for p ∈ [1,∞).
It is a straightforward exercise to check that for 1 < p < q <∞ and any 0 < w ∈ L1

loc(Rn), we
have

A1(Q,w) ≥ Ap(Q,w) ≥ Aq(Q,w) ≥ 1,

where these quantities may be finite or infinite. From these estimates it follows that if Ap(Q,w) <
∞ for some p ∈ [1,∞), then Aq(Q,w) < ∞ for all q ∈ [p,∞), and these local Aq characteristics
are decreasing and bounded from below. By elementary analysis, there exists a limit

A∞(Q,w) := lim
q→∞

Aq(Q,w).

Let us find a more explicit expression for it. Since the factor 〈w〉Q is the same in all Aq(Q,w), we
only need to consider (let εq := 1/(q − 1)→ 0 as q →∞)( 

Q

w−1/(q−1) dx
)q−1

=
( 

Q

[w−εq − 1
εq

εq + 1
]

dx
)q−1

=
(

1 +
1

q − 1

 
Q

w−εq − 1
εq

dx
)q−1

,

and recall that (1 + cm/m)m → ec as m → ∞, if cm → c. Hence, assuming that the limit exists,
we have

lim
q→∞

( 
Q

w−1/(q−1) dx
)q−1

= exp
(

lim
ε→0

 
Q

w−ε − 1
ε

dx
)
.

It is immediate that we have the pointwise limit

w−ε − 1
ε

→ − logw,

and it remains to check the conditions for dominated convergence. Note that w ∈ L1
loc(Rn) and

Ap(Q,w) <∞ implies that w,w−δ ∈ L1(Q) for δ = 1/(p− 1) > 0. By the mean value theorem

w−ε − 1
ε

= − logw · e−ε
′ logw = − logw · w−ε

′
, ε′ ∈ (0, ε).

Since 1 + x ≤ ex, we have logw ≤ w− 1 ≤ w, and hence | logw| = υ−1 logwυ ≤ υ−1wυ for w ≥ 1.
For w < 1 we use | logw| = logw−1 ≤ υ−1w−υ, so altogether, for ε ≤ υ

| logw · w−ε
′
| ≤ max{υ−1w−υ, w} ·max{1, w−υ} ≤ υ−1w−2υ + w.

With υ := δ/2, both terms are integrable, so we have found an integrable majorant for the
(w−ε − 1)/ε, uniformly in ε. Thus

A∞(Q,w) =
(  

Q

w dx
)

exp
(  

Q

lim
ε→0

w−ε − 1
ε

dx
)

=
( 

Q

w dx
)

exp
(
−
 
Q

logw dx
)
,

and it is natural to define

[w]A∞ := sup
Q∈D

A∞(Q,w).

By what we have shown above (it is also easy to check this directly from the definition), we have
Ap ⊆ A∞ and [w]A∞ ≤ [w]Ap .

In fact, if w ∈ A∞, it can be shown (although we will not do so here) that w ∈ Ap for some
p <∞.
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1.8. Weighted Lp norm estimates for the maximal function. We return to the maximal
function. Recall that ‖M‖Lp(w)→Lp,∞(w) = [w]1/pAp

. Also the boundedness on Lp(w) depends on
the same quantity, but we need a somewhat larger power:

Theorem 1.2 (Muckenhoupt 1972; Buckley 1993 [1, 19]). The maximal operator M is bounded
on Lp(w) if and only if w ∈ Ap; more precisely

‖M‖Lp(w)→Lp(w) ≤ Cp[w]1/(p−1)
Ap

, p ∈ (1,∞),

where Cp depends on p but not on w.

Here the qualitative statement is due to Muckenhoupt, the quantitative dependence due to
Buckley. In fact, the Muckenhoupt–Buckley theorem will be deduced as a consequence of the
following more precise version, which I proved with Carlos Pérez last week (10–14 January):

Theorem 1.3 (Hytönen–Pérez 2011 [12]).

‖M‖Lp(w)→Lp(w) ≤ 4e · p′ ·
(
[w]Ap [w−1/(p−1)]A∞

)1/p
.

To see that this implies the Muckenhoupt–Buckley theorem, observe the following immediate
consequence of the definition:

[w]Ap = [w−1/(p−1)]p−1
Ap′

. (1.3)

Since [w−1/(p−1)]Ap′ ≥ [w−1/(p−1)]A∞ , it is easy to conclude after some algebra with the exponents.

1.9. Sawyer’s dual weight trick. We want to prove an estimate of the form

‖Tf‖Lp(w) ≤ N‖f‖Lp(w),

presently for T = M , but the trick given here is equally valid for other operators. Let us substitute
f = φσ, where σ is going to be a new weight yet to be chosen. This leads to the equivalent
formulation

‖M(φσ)‖Lp(w) ≤ N‖φσ‖Lp(w) = N
(ˆ
|φ|pσpw dx

)1/p

.

We want to choose σ so that σpw = σ, i.e., σ = w−1/(p−1). Thus an equivalent problem is to
prove that

‖T (φσ)‖Lp(w) ≤ N‖f‖Lp(σ),

where σ = w−1/(p−1) is precisely the weight which appears in Theorem 1.3. The advantage of this
reformulation is that the same weight σ appears inside the operator T and in the norm on the
right side.

1.10. The two-weight maximal inequality. By Sawyer’s trick, proving Theorem 1.3 is reduced
to proving

‖M(φσ)‖Lp(w) ≤ N‖φ‖Lp(σ)

for certain N and σ depending on w. But let us for the moment consider this estimate on its
own right, for general w and σ, which need not be related to each other. We would like to have a
criterion for the pair of weights (w, σ) under which such an estimate holds. Let us again consider
φ ≥ 0 and a finite D for simplicity, this restriction being easy to lift in the end.

Recall that
M(φσ)(x) = sup

Q∈D
1Q(x)〈fσ〉Q,

where sup is actually max in the finite case. Let

E(Q) :=
{
x ∈ Q : M(φσ)(x) = 〈φσ〉Q > 〈φσ〉Q′ for all Q′ ) Q

}
be the part of Q where the value of the maximal function is reached as the average on Q.

A little thought confirms that the sets E(Q) are pairwise disjoint, and

M(φσ) =
∑
Q∈D

1E(Q)〈φσ〉Q =: M̃(φσ),
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so it suffices to consider the Lp(w) bound for this linearization M̃ of M . (Note that M(φσ) =
M̃(φσ) for the given function φ which was used to define the sets E(Q), but once this definition
is made, we may also consider the action of M̃ , as defined above, on other functions. This M̃ ,
unlike M , is a linear operator.) By disjointness,∥∥∥ ∑

Q∈D

1E(Q)〈φσ〉Q
∥∥∥p
Lp(w)

=
∑
Q∈D

w(E(Q))(〈φσ〉Q)p =
∑
Q∈D

w(E(Q))
(σ(Q)
|Q|

)p
(〈φ〉σQ)p,

and we want a condition for this to be bounded by Np‖φ‖Lp(σ). This is provided by the following:

Theorem 1.4 (Dyadic Carleson embedding theorem). For p ∈ (1,∞), the estimate( ∑
Q∈D

aQ(〈φ〉σQ)p
)1/p

≤ N‖φ‖Lp(σ) ∀φ ∈ Lp(σ)

holds if and only if ( ∑
Q⊆R

aQ

)1/p

≤ Ñσ(R)1/p ∀R ∈ D ;

moreover, Ñ ≤ N ≤ p′ · Ñ .

Proof. The “only if” part is immediate by substituting φ = 1R. The “if” part is the main implica-
tion.

We use the identity (1.2) with the discrete set Ω = D and measure µ({Q}) = aQ, and f(Q) =
〈φ〉σQ. Writing Qt := {Q ∈ D : 〈φ〉σQ > t} and Q∗t for its maximal cubes, this gives∑

Q∈D

aQ(〈φ〉σQ)p =
ˆ ∞

0

ptp−1
∑
Q∈Qt

aQ dt ≤
ˆ ∞

0

ptp−1
∑
R∈Q∗t

∑
Q⊆R

aQ dt

≤
ˆ ∞

0

ptp−1
∑
R∈Q∗t

Ñpσ(R) dt = Ñp

ˆ ∞
0

ptp−1σ
( ⋃
R∈Q∗t

R
)

dt

= Ñp

ˆ ∞
0

ptp−1σ({Mσφ > t}) dt = Ñp‖Mσφ‖pLp(σ) ≤
(
Ñ · p′ · ‖φ‖Lp(σ)

)p
,

where we used the usual properties of the maximal dyadic cubes, and the universal maximal
function estimate in the last step. �

If we apply the Carleson embedding with aQ = w(E(Q))
(
σ(Q)/|Q|

)p, we find that

‖M̃(φσ)‖Lp(w) ≤ N‖f‖Lp(σ) (1.4)

if and only if ∑
Q⊆R

w(E(Q))
(σ(Q)
|Q|

)p
≤ Ñpσ(R) ∀R ∈ D . (1.5)

Note that on E(Q) ⊆ Q ⊆ R, we have σ(Q)/|Q| ≤M(σ1R), and hence∑
Q⊆R

w(E(Q))
(σ(Q)
|Q|

)p
=
ˆ ∑

Q⊆R

1E(Q)

(σ(Q)
|Q|

)p
w

≤
ˆ ∑

Q⊆R

1E(Q)M(1Rσ)pw ≤
ˆ
R

M(1Rσ)pw.

So if ‖1RM(1Rσ)‖Lp(w) ≤ Ñσ(R)1/p, then (1.5) holds, hence by Carleson’s embedding also (??),
and therefore the original two-weight inequality

‖M̃(φσ)‖Lp(w) ≤ N‖f‖Lp(σ).

Conversely, if this estimate holds, then clearly also ‖1RM(1Rσ)‖Lp(w) ≤ Ñσ(R)1/p; just substitute
f = 1R. So altogether we have proven:
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Theorem 1.5 (Sawyer 1982 [25]). The two-weight maximal function estimate

‖M(φσ)‖Lp(w) ≤ N‖φ‖Lp(σ) ∀φ ∈ Lp(σ)

holds if and only if
‖1RM(1Rσ)‖Lp(w) ≤ Ñσ(R)1/p ∀Q ∈ D ;

moreover, Ñ ≤ N ≤ p′ · Ñ .

1.11. Back to the Muckenhoupt–Buckley theorem; principal cubes. Now we return to
the case that w ∈ Ap and σ = w−1/(p−1). We want to estimate the constant Ñ in Sawyer’s
two-weight theorem in this case. This is accomplished with the help of another linearization of M
involving the following principal cubes: Let S0 := {R} and recursively

Sk :=
⋃

S∈Sk−1

{Q ⊂ S : 〈σ〉Q > 2〈σ〉S , Q is a maximal such cube},

and then S :=
⋃∞
k=0 Sk. Let

E(S) := S \
⋃
S′∈S
S′(S

S′

be the part of S which is not contained in any smaller principal cube. The sets E(S), S ∈ S , are
disjoint and partition R.

We also observe that E(S) mush consist of a reasonable fraction of S. In fact, let S ∈ S and
consider all maximal S′ ∈ S strictly contained in S. They all satisfy σ(S′)/|S′| > 2σ(S)/|S|, i.e.,
|S′| < 1

2σ(S′)|S|/σ(S). Hence∑
|S′| ≤ 1

2
|S|
σ(S)

∑
σ(S′) ≤ 1

2
|S|
σ(S)

σ(S) =
1
2
|S|,

and thus |E(S)| ≥ 1
2 |S|.

If x ∈ E(S) and Q 3 x, then 〈σ〉Q ≤ 2〈σ〉S , and hence 1RM(1Rσ) ≤ 2〈σ〉S on 1E(S). So
altogether

‖1RM(1Rσ)‖pLp(w) ≤ 2p
∥∥∥ ∑
S∈S

1E(S)〈σ〉S
∥∥∥p
Lp(w)

= 2p
∑
S∈S

w(E(S))
(σ(S)
|S|

)p
≤ 2p

∑
S∈S

w(E(S))
|S|

(σ(S)
|S|

)p−1(σ(S)
|S|

)
|S|

≤ 2p+1
∑
S∈S

Ap(S,w)A∞(S, σ) exp
(  

S

log σ
)
|E(S)|

≤ 2p+1[w]Ap [σ]A∞

ˆ
R

∑
S∈S

exp
(  

S

log σ
)

1E(S)(x) dx

≤ 2p+1[w]Ap [σ]A∞

ˆ
R

sup
Q∈D

1Q(x) exp
( 

Q

log σ1R
)

dx

=: 2p+1[w]Ap [σ]A∞

ˆ
R

M0(1Rσ)(x) dx,

where the maximal function M0 is essentially defined by the last step above, formally

M0f(x) := sup
Q∈D

1Q(x) exp
( 

Q

log |f |
)
.

Taking for granted for the moment the following mapping property of M0. . .

Lemma 1.2. For all p ∈ (0,∞],

‖M0f‖Lp ≤ e1/p‖f‖Lp .
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. . . we may conclude that

‖1RM(1Rσ)‖pLp(w) ≤ 2p+1[w]Ap [σ]A∞

ˆ
R

M0(1Rσ) ≤ 2p+1[w]Ap [σ]A∞ · e · σ(R).

Hence we can take

Ñ ≤
(
2p+1e · [w]Ap [σ]A∞

)1/p = 21+1/pe1/p
(
[w]Ap [σ]A∞

)1/p ≤ 4e
(
[w]Ap [σ]A∞

)1/p
in Sawyer’s two-weight characterization for M , and the mentioned result finally tells us that

‖M(σφ)‖Lp(w) ≤ 4e · p′ · ([w]Ap [σ]A∞
)1/p‖φ‖Lp(σ).

By Sawyer’s two-weight trick, this concludes the proof of Theorem 1.3.

Remark 1.2. A careful reading of the proof shows that the product

[w]Ap [σ]A∞ = sup
Q
Ap(Q,w) · sup

R
A∞(R, σ),

where the supremum is taken independently for the two factors, could in fact have been replaced
by the somewhat smaller quantity

sup
Q
Ap(Q,w)A∞(Q, σ).

1.12. The logarithmic maximal operator. Let us now prove Lemma 1.2 about the logarithmic
maximal operator M0.

Proof of Lemma 1.2. By Jensen’s inequality and the basic properties of the logarithm, we have

M0f ≤Mf, M0f = (M0|f |1/q)q ≤ (M |f |1/q)q, q ∈ (0,∞).

By the Lq boundedness of the usual maximal function for q > 1, we haveˆ
[M0f ]p ≤

ˆ
[M |f |p/q]q ≤ (q′)q

ˆ
(|f |p/q)q = (q′)q

ˆ
|f |p.

As q →∞, we have

(q′)q =
( q

q − 1

)q
=
(

1 +
1

q − 1

)q
→ e,

and hence ‖M0f‖pLp ≤ e‖f‖
p
Lp for p ∈ (0,∞). �

The constant e is in fact optimal. One way of proving this is indicated in the exercises.

1.13. Back to reality (from the dyadic world). All the considerations above were about the
dyadic maximal function. But in Classical Analysis, one is usually interested about the Hardy–
Littlewood maximal function, where the supremum is taken over all cubes (or balls), not just the
special dyadic ones. However, it turns out that it is reasonable straightforward to pass from one
case to the other. Here it is important that our dyadic results are true for any dyadic system: not
just the standard

D := {2−k
(
[0, 1)n +m

)
: k ∈ Z,m ∈ Zn},

but also the following perturbations:

Dα := {2−k
(
[0, 1)n +m+ (−1)kα

)
: k ∈ Z,m ∈ Zn}, α ∈ {0, 1

3}
n.

It is not difficult to convince oneself from a picture that each of these satisfies the dyadic property
Q ∩ R ∈ {Q,R,∅}. And these 2n dyadic systems Dα are rich enough to approximate all cubes
(with sides parallel to the axes) in Rn:

Proposition 1.4. If Q ⊂ Rn is any cube, there exists α ∈ {0, 1
3}
n and Q′ ∈ Dα such that Q ⊂ Q′

and `(Q′) ≤ 6`(Q).
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Proof. Case n = 1. Now cubes are just intervals. So let an interval I be given. There is exactly
one integral power of 2 in the interval (3`(I), 6`(I)], call it 2k(I). Consider the set of all end-points
of the intervals I ′ ∈ D0 ∪ D1/3 of length 2k(I). The distance of any two such points is at least
1
3 · 2

k(I) > 1
3 · 3`(I) = `(I). But this means that I can contain at most one such end-point. If

I does not contain an end-point of any I ′ ∈ D0 of length 2k(I), then I is fully contained in one
of these intervals (since they cover R). And if I contains an end-point of some I ′ ∈ D0 of length
2k(I), then I does not contain an end-point of any I ′′ ∈ D1/3 of length 2k(I), and hence I must be
contained in some I ′′ ∈ D1/3. So in any case I ⊂ J ∈ D0 ∪D1/3, where `(J) = 2k(I) ≤ 6`(I).

Case n > 1. Now Q = I1 × · · · × In, where the Ij are intervals of the same length. By the
one-dimensional case, for each Ij we find αj ∈ {0, 1

3} and I ′j ∈ D
αj
1 (the subscript 1 refers to

the one-dimensional dyadic system, to distinguish it from the n-dimensional version) such that
Ij ⊂ I ′j , and `(I ′j) is the unique power of two in the interval (3`(Ij), 6`(Ij)] = (3`(Q), 6`(Q)] (hence
it is the same number for each j). It follows that

Q = I1 × · · · × In ⊂ I ′1 × · · · × I ′n =: Q′ ∈ Dα, α = (α1, . . . , αn),

where `(Q′) ≡ `(I ′j) ≤ 6`(Ij) ≡ 6`(Q). �

Let

Mαf(x) := sup
Q∈Dα

1Q(x)
1
|Q|

ˆ
Q

|f(y)|dy

be the dyadic maximal function related to Dα, and

Mf(x) := sup
Q cube

1Q(x)
1
|Q|

ˆ
Q

|f(y)|dy

the Hardy–Littlewood maximal function.

Corollary 1.2. We have the pointwise estimate.

max
α∈{0, 13}

Mαf(x) ≤Mf(x) ≤ 6n max
α∈{0, 13}

Mαf(x)

Proof. The first estimate is clear, since all Q ∈ Dα are examples of all cubes. For the second
estimate, consider x ∈ Rn, a cube Q 3 x, and let Q′ ∈ Dα(Q) be a dyadic cube provided by the
previous proposition with `(Q′) ≤ 6`(Q) and Q′ ⊃ Q 3 x. Then

1
|Q|

ˆ
Q

|f | ≤ 6n

|Q′|

ˆ
Q′
|f | ≤ 6nMα(Q)f(x) ≤ 6n max

α∈{0, 13}
n

Mαf(x).

Taking the supremum over all cubes Q 3 x gives the claim. �

Corollary 1.3.

‖Mf‖Lp(w) ≤ 12n ·N · ‖f‖Lp(w), N := 4e · p′ ·
(
[w]Ap [σ]A∞

)1/p
Proof. Using the earlier results for each of the dyadic maximal functions, we have

‖Mf‖Lp(w) ≤ 6n‖max
α

Mαf‖Lp(w) ≤ 6n
∥∥∥∑

α

Mαf
∥∥∥
Lp(w)

≤ 6n
∑
α

‖Mαf‖Lp(w)

≤ 6n
∑
α

N‖f‖Lp(w) = 6n · 2n ·N‖f‖Lp(w). �

The other results proven for the dyadic maximal function are easy to generalize to the Hardy–
Littlewood maximal function by the same method. The previous proof should serve as sufficient
illustration.
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1.14. Lerner’s proof of the Muckenhoupt–Buckley theorem. If we are interested just in
the bound

‖Mf‖Lp(w) ≤ Cp[w]1/(p−1)
Ap

‖f‖Lp(w),

instead of the more precise version with
(
[w]Ap [σ]A∞

)1/p, an amazingly short argument due to
Lerner is available. It is based on the following:

Proposition 1.5 (Lerner 2008 [15]).

(Mf)p−1 ≤ ‖w‖ApMw[(Mσ(fσ−1))p−1w−1].

Proof. ( 1
|Q|

ˆ
Q

f
)p−1

=
w(Q)
|Q|

(σ(Q)
|Q|

)p−1 |Q|
w(Q)

( 1
σ(Q)

ˆ
Q

fσ−1σ
)p−1

≤ ‖w‖Ap
|Q|
w(Q)

inf
Q

[Mσ(fσ−1)]p−1

≤ ‖w‖Ap
1

w(Q)

ˆ
Q

[Mσ(fσ−1)]p−1w−1w.

Taking the supremum over all dyadic Q 3 x gives the assertion. �

After this pointwise bound, the norm inequality is just a question of applying the universal
maximal function estimate:

Proof of Theorem 1.2 (Lerner 2008 [15]).

‖Mf‖Lp(w) = ‖(Mf)p−1‖1/(p−1)

Lp′ (w)

≤ ‖w‖1/(p−1)
Ap

‖Mw[(Mσ(fσ−1))p−1w−1]‖1/(p−1)

Lp′ (w)

≤ ‖w‖1/(p−1)
Ap

(
p · ‖(Mσ(fσ−1))p−1w−1‖Lp′ (w)

)1/(p−1)

= ‖w‖1/(p−1)
Ap

p1/(p−1)‖Mσ(fσ−1)‖Lp(σ)

≤ ‖w‖1/(p−1)
Ap

p1/(p−1) · p′ · ‖fσ−1‖Lp(σ)

= p1/(p−1) · p′ · ‖w‖1/(p−1)
Ap

‖f‖Lp(w).

A standard calculus optimization shows that p1/(p−1) ≤ e, so altogether

‖Mf‖Lp(w) ≤ e · p′ · ‖w‖
1/(p−1)
Ap

‖f‖Lp(w);

in terms of the numerical constant, this is even slightly better than what we obtained by the
previous method. �

It would be interesting to find a Lerner-type argument for the sharper Theorem 1.3.

2. Extrapolation theory

In this section, we deal with a surprising phenomenon in the weighted world: If an operator T
is bounded on Lr(w) for some r ∈ (1,∞) and for all w ∈ Ar, then it is in fact bounded on Lp(w)
for all p ∈ (1,∞) and for all w ∈ Ap. This is the content of the extrapolation theorem of Rubio
de Francia (1984) [24], one of the highlights of the weighted theory. At the time it was proven,
the interest in the quantitative weighted estimates had not yet started, but it turns out that a
careful examination of the argument even provides a quantitative estimate. This was achieved by
Dragičević, Grafakos, Pereyra and Petermichl (2005) [6]. This argument has been simplified by
Duoandikoetxea (unpublished). The weighted boundedness of the maximal operator is a crucial
ingredient of the proof. By using the sharp form of the Muckenhoupt–Buckley theorem, also the
quantitative extrapolation can be made even slightly more precise: (This is again recent joint work
of myself and Carlos Pérez [12].)
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Consider weighted estimates of the form

‖Tf‖Lp(w) .
∑

[w]α(p)
Ap

[w]β(p)
A∞

[w−1/(p−1)](p−1)γ(p)
A∞

‖f‖Lp(w), (2.1)

where the sum is over a finite set of triples (α, β, γ). We now aim to extrapolate such bounds from
one value of p to others.

Theorem 2.1. Suppose that for some r and every w ∈ Ar, an operator T satisfies (2.1) for p = r.
Then it satisfies the same bound for every p ∈ (1, r) with

α(p) = α(r) + τ(r)
r − p
p

, τ := α+ β + γ

β(p) = β(r),

γ(p) = γ(r) + τ(r)
r − p
p(p− 1)

.

In particular,

τ(p) = τ(r)
r − 1
p− 1

.

Lemma 2.1. Let g ∈ Lp(w) have norm 1. Let

Rg :=
∞∑
k=0

2−kMkg

‖M‖kLp(w)→Lp(w)

, (2.2)

where Mkg := M ◦ · · · ◦M(f) (k iterations of the maximal operator), and M0g := g. Then Rg
satisfies the following properties:

|g| ≤ Rg, ‖Rg‖Lp(w) ≤ 2‖g‖Lp(w) = 2, [Rg]A1 ≤ 2‖M‖Lp(w)→Lp(w).

Proof. The first one follows from the fact that all terms in the defining series are nonnegative, and
the first one is g. For the second, by the triangle inequality in Lp(w), we have

‖Rg‖Lp(w) ≤
∞∑
k=0

2−k
‖Mkg‖Lp(w)

‖M‖kLp(w)→Lp(w)

≤
∞∑
k=0

2−k‖g‖Lp(w) = 2‖g‖Lp(w) = 2.

For the last property, use the triangle inequality (together with the sublinearity of the maximal
operator) pointwise and change the summation variable to see that

M(Rg)(x) ≤
∞∑
k=0

2−kMk+1g(x)
‖M‖kLp(w)→Lp(w)

= 2‖M‖Lp(w)→Lp(w)

∞∑
k=0

2−k−1Mk+1g(x)
‖M‖k+1

Lp(w)→Lp(w)

2‖M‖Lp(w)→Lp(w)

∞∑
k=1

2−kMkg(x)
‖M‖kLp(w)→Lp(w)

≤ 2‖M‖Lp(w)→Lp(w)Rg(x).

Recalling the definition of A1, this says exactly that [Rg]A1 ≤ 2‖M‖kLp(w)→Lp(w). �

Proof of Theorem 2.1. Fix some p ∈ (1, r), w ∈ Ap, f ∈ Lp(w) and g := |f |/‖f‖Lp(w). We will
make extensive use of the auxiliary function Rg ∈ A1 as provided by the previous lemma. Its A1

property will in practice be applied via the following equivalent formulation:

sup
Q

(Rg)−1 ≤ [Rg]A1〈Rg〉−1
Q .

To prove the boundedness of T on Lp(w), the quantity we need to estimate is

‖Tf‖Lp(w) =
(ˆ
|Tf |p(Rg)−(r−p)p/r(Rg)(r−p)p/rw

)1/p

≤
(ˆ
|Tf |r(Rg)−(r−p)w

)1/r(ˆ
(Rg)pw

)1/p−1/r

≤ ‖Tf‖Lr(W )(2p)1/p−1/r, W := (Rg)−(r−p)w.
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By assumption, we have

‖Tf‖Lr(W ) .
∑

[W ]α(r)
Ar

[W ]β(r)
A∞

[W−1/(r−1)](r−1)γ(r)
A∞

‖f‖Lr(W ), (2.3)

where

‖f‖Lr(W ) =
(ˆ
|f |r(Rf)−(r−p)w

)1/r

‖f‖(r−p)/rLp(w)

≤
(ˆ
|f |r|f |−(r−p)w

)1/r

‖f‖(r−p)/rLp(w) = ‖f‖Lp(w),

so it remains to estimate the weight characteristics

[W ]Ar , [W ]A∞ , [W−1/(r−1)]A∞ .

So far, we do not even know if they are finite, so in principle (2.3) could be a useless statement
saying only that ‖Tf‖Lr(W ) ≤ ∞.

Using supQ(Rg)−1 ≤ [Rg]A1〈Rg〉−1
Q or Hölder’s or Jensen’s inequality where appropriate, we

compute

〈W 〉Q = 〈(Rg)−(r−p)w〉Q
≤ [Rg]r−pA1

〈Rg〉−(r−p)
Q 〈w〉Q,

〈W−1/(r−1)〉r−1
Q = 〈(Rg)(r−p)/(r−1)w−1/(r−1)〉r−1

Q

≤ 〈Rg〉r−pQ 〈w−1/(p−1)〉p−1
Q ,

exp〈− logW 〉Q =
(

exp〈log(Rg)〉Q
)r−p exp〈− logw〉Q

≤ 〈Rg〉r−pQ exp〈− logw〉Q,

and (
exp〈− logW−1/(r−1)〉Q

)r−1

=
(

exp〈log(Rg)−1〉Q
)r−p( exp〈− logw−1/(r−1)〉Q

)r−1

≤ [Rg]r−pA1
〈Rg〉−(r−p)( exp〈− logw−1/(p−1)〉Q

)p−1
.

Multiplying the appropriate estimates and using the definition, we then have

[W ]Ar ≤ [Rg]r−pA1
[w]Ap , [W ]A∞ ≤ [Rg]r−pA1

[w]A∞ ,

[W−1/(r−1)]r−1
A∞
≤ [Rg]r−pA1

[w−1/(p−1)]p−1
A∞

.

Also recall that

[Rg]A1 ≤ 2‖M‖Lp(w)→Lp(w) . [w]1/pAp
[w−1/(p−1)]1/pA∞

.

Thus, with τ(r) := α(r) + β(r) + γ(r), we obtain that

‖T‖Lp(w)→Lp(w) .
∑

[W ]α(r)
Ar

[W ]β(r)
A∞

[W−1/(r−1)](r−1)γ(r)
A∞

.
∑

[Rg]τ(r)(r−p)
A1

[w]α(r)
Ap

[w]β(r)
A∞

[w−1/(p−1)](p−1)γ(r)
A∞

.
∑

[w]α(r)+τ(r)(r−p)/p
Ap

[w]β(r)
A∞

[w−1/(p−1)](p−1)γ(r)+τ(r)(r−p)/p
A∞

,

from which the asserted exponents can be easily read. �

A similar result also holds for exponents bigger than the original one:
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Theorem 2.2. Suppose that for some r and every w ∈ Ar, an operator T satisfies (2.1) for p = r.
Then it satisfies the same bound for every p ∈ (r,∞) with

α(p) =
r − 1
p− 1

α(r) +
p− r

(p− 1)p
τ(r), τ := α+ β + γ

β(p) =
r − 1
p− 1

β(r) +
p− r
p

τ(r),

γ(p) =
r − 1
p− 1

γ(r).

In particular,
τ(p) = τ(r).

Sketch of proof. The proof involves very similar ideas as the previous one, the main difference
being the use of duality. Fix some p ∈ (r,∞), w ∈ Ap, f ∈ Lp(w). By duality, we have

‖Tf‖Lp(w) = sup
h≥0

‖h‖
Lp
′ (w)=1

ˆ
|Tf |hw.

We fix one such h, and try to bound the expression on the right.
Observe that the pointwise multiplication operators

h 7→ wh : Lp
′
(w)→ Lp

′
(w1−p′), g 7→ 1

w
g : Lp

′
(w1−p′)→ Lp

′
(w)

are isometric. Let R be as in the previous proof, except with p′ and σ = w1−p′ in place of p and
w:

Rg :=
∞∑
k=0

2−kMkg

‖M‖k
B(Lp′ (σ))

,

and R′h := w−1R(wh). Then one checks that

h ≤ R′h, ‖R′h‖Lp′ (w) ≤ 2‖h‖Lp′ (w) = 2, [wR′h]A1 ≤ 2‖M‖B(Lp′ (σ).

The estimation then starts fromˆ
|Tf |hw ≤

ˆ
|Tf |(R′h)w =

ˆ
|Tf |(R′h)(p−r)/[r(p−1)](R′h)(r−1)p/[r(p−1)]w

≤
(ˆ
|Tf |r(R′h)(p−r)/(p−1)w

)1/r(ˆ
(R′h)p/(p−1)w

)1/r′

≤ ‖Tf‖Lr(W )2p
′/r′ , W := (R′h)(p−r)/(p−1)w.

The assumption on the boundedness of T can now be applied, and it remains to estimate the
weight characteristics of W , in analogy with the previous proof. �

3. Lerner’s “magic formula”

The topic of this section is a certain formula, discovered by Lerner (2010) [16], which provides
very useful and precise information about a measurable function in terms of its “local oscillations”.
As such, this formula has nothing to do with weights, and could be part of a general course in Real
Analysis. However, the formula was developed with applications to weighted norm inequalities in
mind, and it has proven to be very powerful in this context. At the time of writing these lectures,
it is not known whether the most general weighted inequalities can be proven by the use of Lerner’s
formula; but some important special cases can be derived from this formula in an elegant way,
much simpler than any other known method.

Before stating and proving the actual formula, we need some preparations.



16 TUOMAS HYTÖNEN

3.1. The median of a function. Let f : Q→ R be a measurable function. Here Q could be any
set of finite positive measure, but later on it will mostly be a cube; hence the choice of the letter.
The median of f on Q is any real number mf (Q) with the following two properties:

|Q ∩ {f > mf (Q)}| ≤ 1
2 |Q|, |Q ∩ {f < mf (Q)}| ≤ 1

2 |Q|.
It is left as an exercise to show that a median always exists; it need not be unique, but the set of
all medians is always a closed interval.

The median can be thought of as a substitute for the average of the function on Q. An
advantage is the fact that the median exists for any measurable function, whereas the average
〈f〉Q = |Q|−1

´
Q
f dx requires f to be integrable. (The median is also more stable in the sense

that it does not “see” singularities of a function which appear in sets of small measure, and it is
often preferred in applied statistics: on the economy pages of a newspaper one can often read about
the median prediction for the profit of a company.) A disadvantage is the possible non-uniqueness.
Because of this, one needs to be somewhat careful when working with the median.

The following simple observation is handy for estimating the median:

Lemma 3.1. The following claims hold for all medians mf (Q) and real numbers α:
• If |Q ∩ {f ≥ α}| > 1

2 |Q|, then mf (Q) ≥ α.
• If |Q ∩ {f ≤ α}| > 1

2 |Q|, then mf (Q) ≤ α.
• If |Q ∩ {f = α}| > 1

2 |Q|, then mf (Q) = α.

Proof. Consider the first case, and suppose for contradiction that mf (Q) < α is a median. So in
particular |Q ∩ {f > mf (Q)}| ≤ 1

2 |Q|, hence
1
2 |Q| ≤ |Q ∩ {f ≤ mf (Q)}| ≤ |Q ∩ {f < α}| < 1

2 |Q|,
a contradiction.

The second claim can be proven similarly, or by reduction to the first claim by considering
(−f,−α) in place of (f, α). The third claim follows at once from the first and second. �

There is a median analogue of Lebesgue’s differentiation theorem (which deals with averages):

Proposition 3.1 (Fujii 1991 [9]). Let f : Rn → R be measurable. Then for almost every x ∈ Rn,
we have

lim
Q3x
|Q|→0

mf (Q) = f(x),

where the limit is along all cubes containing x, whose volume goes to zero, and along all medians
of f on these cubes.

Proof. We introduce the auxiliary functions

sk :=
∑
j∈Z

j

2k
1{j2−k≤f<(j+1)2−k} =:

∑
j∈Z

j

2k
1Ekj .

Then sk ≤ f < sk + 2−k at every point. Observe that {Ekj}j∈Z is a partition of Rn for every k.
Now every 1Ekj ∈ L1

loc, so we may apply the usual Lebesgue differentiation theorem, to the result
that

|Q ∩ Ekj |
|Q|

=
1
|Q|

ˆ
Q

1Ekj dx −→
Q3x
|Q|→0

1Ekj (x) (3.1)

for almost every x ∈ Rn. Let us explicitly denote the exceptional null set by Nkj , so the above
convergence holds for every x ∈ N c

kj . Let N :=
⋃
k,j Nk,j . This is another null set, and the

convergence (3.1) holds for every x ∈ N c and every k, j ∈ Z.
We turn to the actual claim of the lemma. Written out in terms of the definition of the limit,

it says that for almost every x ∈ Rn,

∀ε > 0 ∃δ > 0 : ∀Q 3 x, |Q| < δ ⇒ |mf (Q)− f(x)| < ε, (3.2)

where mf (Q) is any median of f on Q.



WEIGHTED NORM INEQUALITIES 17

Let x ∈ N c and ε > 0 be given. We choose k so that 2−k < ε. There is a unique j (determined
by x and k) such that x ∈ Ekj . By (3.1), we have the existence of a δ > 0 such that

|Q ∩ Ekj |
|Q|

>
2
3

∀Q 3 x such that |Q| < δ. (3.3)

We now check that this same δ is also good for (3.2). So fix any cube Q as in (3.2). Recalling that
Ekj ⊆ {f ≥ j2−k} ∩ {f ≤ (j + 1)2−k}, Lemma 3.1 and (3.3) imply that

j2−k ≤ mf (Q) ≤ (j + 1)2−k.

But we also have j2−k ≤ f(x) < (j + 1)2−k since x ∈ Ekj , and thus |mf (Q) − f(x)| ≤ 2−k < ε,
and this is what we wanted to prove. �

3.2. The decreasing rearrangement. This is another concept, which can be defined for any
measurable function f . We denote

f∗(t) := inf{α ≥ 0 : |{|f | > α}| ≤ t} (inf ∅ :=∞).

We make the following observations:
• f∗ is non-increasing.

Indeed, if s > t, the condition |{|f | > α}| ≤ s is easier to satisfy than |{|f | > α}| ≤ t.
So the set of admissible α’s is bigger for s, and the infimum of a bigger set is smaller.

• The set inside the infimum is of the form [α0,∞) (or ∅). Hence the infimum is reached
as a minimum; in particular, f∗(t) itself is an admissible value of α, so that

|{|f | > f∗(t)}| ≤ t. (3.4)

Indeed, if the set is nonempty and α belongs to this set, then every α′ > α satisfies

|{|f | > α′}| ≤ |{|f | > α}| ≤ t,

so also α′ belongs to the set. So it remains to show that the infimum α0 also belongs to
the set. This follows from {|f | > α0} =

⋃∞
j=1{|f | > α0 + j−1} and the monotonicity of

the measure,
|{|f | > α0}| = lim

j→∞
|{|f | > α0 + j−1}| ≤ t.

• We have (f1Q)∗(t) = inf{α ≥ 0 : |Q ∩ {|f | > α}| ≤ t}.
It suffices to check that Q ∩ {|f | > α} = {|1Qf | > α}. But this is easy to see.

A very useful connection between the median and the decreasing rearrangement is the following:

Lemma 3.2. The following estimate holds for all λ ∈ (0, 1
2 ) and all medians mf (Q):

|mf (Q)| ≤ (f1Q)∗(λ|Q|).

Proof. The right side is the infimum of {α ≥ 0 : |Q ∩ {|f | > α}| ≤ λ|Q|}. It suffices to prove that
if α < |mf (Q)|, then it is not in this set, for this implies that the infimum of the set is at least
|mf (Q)|.

So let 0 ≤ α < |mf (Q)|, wheremf (Q) is a median. We prove that |Q∩{|f | > α}| ≥ 1
2 |Q| > λ|Q|.

Suppose first that mf (Q) > 0. Then

|Q ∩ {|f | > α}| ≥ |Q ∩ {f > α}| ≥ |Q ∩ {f ≥ mf (Q)}| = |Q| − |Q ∩ {f < mf (Q)}| ≥ 1
2 |Q|.

If mf (Q) < 0, then α < |mf (Q)| = −mf (Q) implies −α > mf (Q), and hence

|Q ∩ {|f | > α}| ≥ |Q ∩ {f < −α}| ≥ |Q ∩ {f ≤ mf (Q)}| = |Q| − |Q ∩ {f > mf (Q)}| ≥ 1
2 |Q|.

So we are done; of course the case mf (Q) = 0 is trivial from the beginning. �

Remark 3.1. The limiting case λ = 1
2 of the previous estimate is more tricky. It is only true that

there exists a median mf (Q) such that |mf (Q)| ≤ (f1Q)∗( 1
2 |Q|), but this need not be the case for

all medians. Therefore we prefer to work with the more flexible estimate with λ < 1
2 , where we

do not need to specify the choice of the median which we work with.
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Related to this point, there is a slightly careless claim in Lerner’s original paper that “it is easy
to see that |mf (Q)| ≤ (f1Q)∗( 1

2 |Q|)”, and this is also used in the proof of his formula. We will
need to slightly modify the proof to avoid the problems related to this estimate.

3.3. Local oscillations of a function. The following quantity should be understood as a measure
of how well the function f can be approximated by a constant in the cube (or another set of finite
positive measure) Q:

ωλ(f ;Q) := inf
c

(
(f − c)1Q

)∗(λ|Q|).
We also define an associated maximal function

M#
λ,Qf(x) := sup

Q′∈D(Q)

1Q′(x)ωλ(f ;Q′),

where D(Q) is the collection of dyadic subcubes of Q, obtained by repeatedly dividing into 2n

equal cubes. (In this section, we always consider this usual dyadic structure of Rn, no longer an
abstract dyadic structure as before. In particular, we will exploit the fact the dyadic parent Q̂ of
Q [the minimal dyadic cube, which strictly contains Q] has measure |Q̂| = 2n|Q|.)

Finally, it will be convenient to have a variant of ωλ(f ;Q) involving the median rather than an
arbitrary constant. We let

ω̃λ(f ;Q) := sup
mf (Q)

(
(f −mf (Q))1Q

)∗(λ|Q|),
where the supremum (on purpose, not the infimum here!) is taken over all medians mf (Q) of f
on Q. Then

Lemma 3.3. For λ ∈ (0, 1
2 ), we have

ωλ(f ;Q) ≤ ω̃λ(f ;Q) ≤ 2ωλ(f ;Q).

Before turning to the proof, we record a useful observation for later purposes as well. For a
function f and a constant c, there holds

mf−c(Q) = mf (Q)− c (3.5)

as an equality of sets: the set of all medians of f − c is obtained by translating the set of all
medians of f , as stated. This follows immediately from the definition.

Proof of Lemma 3.3. The first estimate is obvious. For the second, recalling the definitions, we
need to show the following: for any median mf (Q) and any constant c, we have

inf{α ≥ 0 : |Q ∩ {|f −mf (Q)| > α}| ≤ λ|Q|} ≤ 2
(
(f − c)1Q

)∗(λ|Q|).
And this means that α = 2

(
(f − c)1Q

)∗(λ|Q|) should be an admissible value in the set inside the
infimum, i.e., that ∣∣Q ∩ {|f −mf (Q)| > 2

(
(f − c)1Q

)∗(λ|Q|)}∣∣ ≤ λ|Q|. (3.6)

Let us prove this. By triangle inequality, (3.5) and Lemma 3.2, we have

|f −mf (Q)| ≤ |f − c|+ |mf (Q)− c|

= |f − c|+ |mf−c(Q)| ≤ |f − c|+
(
(f − c)1Q

)∗(λ|Q|).
(Here, given a median mf (Q) of f , we have that mf (Q)−c is a median of f−c, and it is important
that the bound of Lemma 3.2 holds for all these medians; this is ensured by λ < 1

2 .) Hence∣∣Q ∩ {|f −mf (Q)| > 2
(
(f − c)1Q

)∗(λ|Q|)}∣∣
≤
∣∣Q ∩ {|f − c| > ((f − c)1Q)∗(λ|Q|)}∣∣ ≤ λ|Q|

by (3.4) in the last step. This proves (3.6), and hence the Lemma. �
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3.4. Lerner’s formula. Now we are fully prepared for the main result of this section:

Theorem 3.1 (Lerner 2010 [16]). Let Q0 ⊂ Rn be a cube, and f : Q0 → R a measurable function.
Then there exist dyadic subcubes Qkj of Q0 such that for almost every x ∈ Q0,

|f(x)−mf (Q0)| ≤ 4M#
1/4,Q0

f(x) + 4
∞∑
k=1

∑
j

ω2−n−2(f ; Q̂kj ) · 1Qkj (x),

where mf (Q0) is any median of f . Moreover,
• {Qkj }j is a disjoint collection for any fixed k,
• the sets Ωk :=

⋃
j Q

k
j satisfy Ωk+1 ⊂ Ωk, and

• |Qkj ∩ Ωk+1| ≤ 1
2 |Q

k
j |.

Proof. Fix a median mf (Q0), and let f1 := f −mf (Q0). Fujii’s lemma ensures that

|f1(x)| = lim
Q∈D(Q0)
Q3x,|Q|→0

|mf1(Q)| ≤ sup
Q∈D(Q0)

1Q(x) sup
mf1 (Q)

|mf1(Q)| =: m∆
Q0
f1(x), (3.7)

where the last equality simply defines yet another maximal operator m∆
Q0

, and supmf1 (Q) is the
supremum over all medians. We let

Ω1 := Q0 ∩ {m∆
Q0
f1 > ω̃1/4(f ;Q0)} =

⋃
j

Q1
j ,

where Q1
j are the maximal cubes in D(Q0) such that supmf1 (Q) |mf1(Q)| > ω̃1/4(f ;Q0). By

Lemma 3.2, we have |mf1(Q0)| ≤ ω1/4(f ;Q0) ≤ ω̃1/4(f ;Q0), so Q0 itself cannot be among these
cubes; thus all Q1

j are strict subcubes of Q0, so that also Q̂1
j ∈ D(Q0).

We claim that
|Ω1| =

∑
j

|Q1
j | ≤ 1

2 |Q0|. (3.8)

To see this, we make the following auxiliary considerations:

(f11Q0)∗( 1
4 |Q0|) =

(
(f −mf (Q0))1Q0

)∗( 1
4 |Q0|) (definition of f1)

≤ ω̃1/4(f ;Q0) (definition of ω̃1/4)

< sup
mf1 (Q1

j )

|mf1(Q1
j )| (definition of Q1

j )

≤ (f11Q1
j
)∗(λ|Q1

j |) (Lemma 3.2, for any λ ∈ (0, 1
2 ))

= inf
{
α ≥ 0 : |Q1

j ∩ {|f1| > α}| ≤ λ|Q1
j |
}

(definition of f∗).

That the infimum is strictly bigger than the left side means that α = (f11Q0)∗( 1
4 |Q0|) is not an

admissible value; hence we have the opposite inequality∣∣Q1
j ∩
{
|f1| > (f11Q0)∗( 1

4 |Q0|)
}∣∣ > λ|Q1

j |

We sum this over all Q1
j , recalling that these are disjoint (being maximal), and all contained in

Q0:

λ
∑
j

|Q1
j | <

∑
j

∣∣Q1
j ∩
{
|f1| > (f11Q0)∗( 1

4 |Q0|)
}∣∣

≤
∣∣Q0 ∩

{
|f1| > (f11Q0)∗( 1

4 |Q0|)
}∣∣ ≤ 1

4 |Q0| (by (3.4)).

Hence |Ω1| ≤ (4λ)−1|Q0| for any λ ∈ (0, 1
2 ), and letting λ→ 1

2 gives the claimed estimate (3.8).
Choosing any medians mf1(Q1

j ), we can now write the identity

(f −mf (Q0))1Q0 = f11Q0 = f11Q0\Ω1 +
∑
j

mf1(Q1
j ) · 1Q1

j
+
∑
j

(f1 −mf1(Q1
j )) · 1Q1

j

= f11Q0\Ω1 +
∑
j

mf1(Q1
j ) · 1Q1

j
+
∑
j

(f −mf (Q1
j )) · 1Q1

j
,

(3.9)
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observing in the last step that

f1 −mf1(Q1
j ) = (f −mf (Q0))−mf−mf (Q0)(Q1

j )

= (f −mf (Q0))− (mf (Q1
j )−mf (Q0)) = f −mf (Q1

j )

for some median mf (Q1
j ).

For the first two terms on the right of (3.9), we have the following estimates:

|f1|1Q0\Ω1 ≤ m
∆
Q0
f1 · 1Q0\Ω1 (by (3.7))

≤ ω̃1/4(f ;Q0) · 1Q0\Ω1 (definition of Ω1)

≤ 2ω1/4(f ;Q0) · 1Q0\Ω1 (Lemma 3.3)

≤ 2M#
1/4,Q0

f · 1Q0\Ω1 (definition of M#
1/4,Q0

),

and
|mf1(Q1

j )|

≤ |mf1(Q1
j )−mf1(Q̂1

j )|+ |mf1(Q̂1
j )|

= |mf−mf (Q̂1
j )

(Q1
j )|+ |mf1(Q̂1

j )| (by (3.5), applied twice)

≤
(
(f −mf (Q̂1

j ))1Q1
j

)∗( 1
4 |Q

1
j |) + ω̃1/4(f ;Q0) (Lemma (3.2); definition of Q1

j )

≤
(
(f −mf (Q̂1

j ))1Q̂1
j

)∗(2−n−2|Q̂1
j |) + ω̃1/4(f ;Q0) (g∗ ≤ h∗ if g ≤ h; |Q1

j | = 2−n|Q̂1
j |)

≤ ω̃2−n−2(f ; Q̂1
j ) + ω̃1/4(f ;Q0) (definition of ω̃)

≤ 2ω2−n−2(f ; Q̂1
j ) + 2ω1/4(f ;Q0) (Lemma 3.3)

And the summands in the third term on the right of (3.9) are of the same form as the left side
(f−mf (Q0))1Q0 which we started from. So the point is now that we can iterate the same algorithm
on these smaller cubes.

Let us check that such iteration gives the following identity:

(f −mf (Q0))1Q0 =
K∑
k=1

fk1Ωk−1\Ωk +
K∑
k=1

∑
j

mfk(Qkj ) · 1Qkj +
∑
j

(f −mf (QKj )) · 1QKj , (3.10)

where Ω0 := Q0, Ωk :=
⋃
j Q

k
j , and each fk is of the form

fk =
∑
i

(f −mf (Qk−1
i ))1Qk−1

i

(where the summation contains just one term for k − 1 = 0, with Q0
i = Q0), and all Qkj are

contained in some Qk−1
i , in such a way that |Qk−1

i ∩ Ωk| ≤ 1
2 |Q

k−1
i |. Moreover,

|fk| · 1Ωk−1\Ωk ≤ 2M#
1/4;Q0

f · 1Ωk−1\Ωk ,

|mfk(Qkj )| ≤ 2ω2−n−2(f ; Q̂kj ) + 2ω1/4(f ;Qk−1
i ) ∀Qkj ⊂ Qk−1

i .
(3.11)

Indeed, for K = 1, these are just the identity (3.9) and the subsequent estimates for |f1| and
mf1(Q1

j ). Assuming (3.10) for some K, we check it for K + 1, thereby proving this identity by
induction. To this end, we only need to apply (3.9) to each QKj in place of Q0, producing cubes
QK+1
i ⊂ QKj (in place of Q1

j ) whose union ΩK+1 =
⋃
iQ

K+1
i satisfies |QKi ∩ ΩK+1| ≤ 1

2 |Q
K
j | and

(f −mf (QKj )) · 1QKj =: fK+1 · 1QKj
= fK+1 · 1QKj \ΩK+1

+
∑

i:QK+1
i ⊂QKj

mfK+1(QK+1
i ) +

∑
i:QK+1

i ⊂QKj

(f −mf (QK+1
i )) · 1QK+1

i
, (3.12)

where
|fK+1| · 1QKj \ΩK+1

≤ 2M#

1/4;QKj
f · 1QKj \ΩK+1

≤ 2M#
1/4;Q0

f · 1QKj \ΩK+1

|mfK+1(QK+1
i )| ≤ 2ω2−n−2(f ; Q̂K+1

i ) + 2ω1/4(f ;QKj ).



WEIGHTED NORM INEQUALITIES 21

Summing (3.12) over j and reorganizing
∑
j

∑
i:QK+1

i ⊂QKj

=
∑
i

, we have

∑
j

(f −mf (QKj )) · 1QKj

= fK+1 · 1ΩK\ΩK+1 +
∑
i

mfK+1(QK+1
i ) +

∑
i

(f −mf (QK+1
i )) · 1QK+1

i
,

which may be substituted to (3.10) to produce a similar formula with K + 1 in place of K. This
proves (3.10) for all K by induction.

We next want to pass to the limit K → ∞ in (3.10). Observe that the last term is supported
on
⋃
j Q

K
j = ΩK , where

Ωk ⊂ Ωk−1 ⊂ · · · ⊂ Q0, |Ωk| ≤ 2−1|Ωk−1| ≤ · · · ≤ 2−k|Q0|.

Hence Ω∞ :=
⋂∞
k=0 Ωk has measure zero. If x /∈ Ω∞, then x /∈ ΩK for all K bigger than some

K(x), and hence the last term in (3.10) vanishes for all these K. That is, for almost every x ∈ Q0

(namely, x ∈ Q0 \ Ω∞), we have

(f(x)−mf (Q0)) · 1Q0(x) =
∞∑
k=1

(
fk(x) · 1Ωk−1\Ωk(x) +

∑
j

mfk(Qkj ) · 1Qkj (x)
)
, (3.13)

where the existence of this
∑∞
k=0 = limK→∞

∑K
k=0 follows from the identity (3.10) and the just

established convergence of the last term to zero.
We now estimate by absolute values, using the bounds (3.11). Here it is convenient to reorganize

the latter sum as
∑
j

=
∑
i

∑
j:Qkj⊂Q

k−1
i

again. This gives

|(f −mf (Q0)) · 1Q0 |

≤
∞∑
k=1

(
2M#

1/4;Q0
f · 1Ωk−1\Ωk +

∑
i

∑
j:Qkj⊂Q

k−1
i

2
(
ω2−n−2(f ; Q̂kj ) + ω1/4(f ;Qk−1

i )
)
1Qkj

)

≤ 2M#
1/4;Q0

f · 1Q0 + 2
∑
k,j

ω2−n−2(f ; Q̂kj ) · 1Qkj + 2
∞∑
k=1

∑
i

ω1/4(f ;Qk−1
i ) · 1Qk−1

i
,

where we used
∑∞
k=1 1Ωk−1\Ωk ≤ 1Q0 and

∑
i:Qkj⊂Q

k−1
i

1Qkj ≤ 1Qk−1
i

by the disjointness of these
sets. The first two terms are of the asserted form, and it remains to investigate the last one.

For k = 1, the i-sum contains just the single term

ω1/4(f ;Q0) · 1Q0 ≤M
#
1/4,Q0

f · 1Q0 .

And for k ≥ 2, we have

ω1/4(f ;Qk−1
i ) = inf

c
(1Qk−1

i
(f − c))∗( 1

4 |Q
k−1
i |)

≤ inf
c

(1Q̂k−1
i

(f − c))∗(2−n−2|Q̂k−1
i |) = ω2−n−2(f ; Q̂k−1

i );

hence, by this estimate and relabeling the summation variables,

∞∑
k=2

∑
i

ω1/4(f ;Qk−1
i ) · 1Qk−1

i
≤
∞∑
k=1

∑
j

ω2−n−2(f ; Q̂kj ) · 1Qkj .

Putting these estimates together, we have proven Lerner’s formula exactly as stated. �
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4. A dyadic model of singular integrals: the dyadic shifts

We now turn to the investigation of weighted inequalities for the second class of operators
of interest, the singular integral operators. Just like with maximal operators, our approach will
proceed via a dyadic model first. Unlike with the maximal operators, the connection of this dyadic
model to the “real world” of classical operators is not so obvious at the first sight, and establishing
this connection will depend on nontrivial representation theorems, which we take up at a later
point. For the moment, we just introduce and study the dyadic model operators on their own
right.

4.1. Dyadic cubes, Haar functions. Again, we will need more precisely specified dyadic cubes
than just the general property Q∩R ∈ {Q,R,∅}. The exact coordinate representation is still not
important, but we will impose the following structural conditions:

D =
⋃
k∈Z

Dk,

where each Dk is a partition of Rd (we now use d for dimension, liberating n for other purposes)
into axes-parallel cubes of sidelength `(Q) = 2−k, and each Q ∈ Dk is the disjoint union of 2d

cubes Q′ ∈ Dk+1, called its children. Likewise, each cubes has a unique parent, which we denote
by Q(1) = Q̂, and the jth generation ancestor is defined inductively by Q(j) := Q̂(j−1).

We have the averaging (or in probabilistic language: conditional expectation) operators

Ekf :=
∑
Q∈Dk

1Q〈f〉Q,

which are pointwise dominated by the maximal function Mf . If f ∈ Lp(Rd) for some p ∈ [1,∞),
one easily checks that 〈f〉Q → 0 as `(Q) → ∞. Lebesgue’s differentiation theorem tells that
〈f〉Q → f(x) when `(Q) → 0 and Q 3 x, for all f ∈ L1

loc(Rd) almost every x. Hence, for
f ∈ Lp(Rd), p ∈ [1,∞), we have the pointwise convergence

Ekf →

{
0, k → −∞
f, k → +∞.

For p ∈ (1,∞), the domination by Mf ∈ Lp(Rd) yields the corresponding norm convergence in
Lp(Rd). Finally, this can be expressed differently as

f = f − 0 = lim
a→−∞
b→+∞

(Ebf − Eaf) = lim
a→−∞
b→+∞

b−1∑
k=a

(Ek+1f − Ekf) =:
∞∑

k=−∞

Dkf.

We further expand

Ekf =
∑
Q∈Dk

1QEkf =:
∑
Q∈Dk

EQf, Dkf =
∑
Q∈Dk

1QDkf =:
∑
Q∈Dk

DQf.

It is straightforward to check that all operators Ek,Dk,EQ,DQ are projections, and also that
DQDR = 0 for Q 6= R.

For Q ∈ Dk, we have

DQf = 1Q(Ek+1f − Ekf) =
∑

Q′ child of Q

1Q′〈f〉Q′ − 1Q〈f〉Q.

We can then identify the range R(DQ) as

R(DQ) =
{
f : supp f ⊆ Q, f constant of children of Q,

ˆ
Q

f = 0
}

=
{
f =

∑
Q′ child of Q

1Q′aQ′ : aQ′ constant ,
∑

Q′ child of Q

aQ = 0
}
.
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Indeed, it is immediate from the formula of DQf , that functions in the range of DQf have the
asserted form. Conversely, it is easy to check that if f is of the form on the right of the previous
equality, then DQf = f , so that f ∈ R(DQ).

From the second formula for R(DQ), it is immediate that dim R(DQ) = 2d − 1, as there are 2d

variables aQ′ with one linear constraint. We now describe a convenient basis for this linear space.
In dimension d = 1, consider the Haar functions

h0
I := |I|−1/21I , h1

I := |I|−1/2
(
1Ileft − 1Iright

)
,

where Ileft and Iright are the left and right halves of the interval I. Then, in d dimensions, let

hεQ(x) :=
d∏
j=1

h
εj
Ij

(xj), ε = (ε1, . . . , εd) ∈ {0, 1}d, x = (x1, . . . , xd) ∈ Rd, Q = I1 × · · · Id.

By Fubini’s theorem, we have ˆ
hεQh

ε′

Q =
d∏
j=1

ˆ
h
εj
Ij
h
ε′j
Ij
.

If ε 6= ε′, then εj 6= ε′ for some j, and hence {εj , ε′j} = {0, 1}. Hence hεjIjh
ε′j
Ij

= |Ij |−1/2h1
Ij
, which

clearly integrates to zero. It is also immediate that (hεjIj )
2 = |Ij |−1 · 1Ij , which integrates to 1. So

we have ˆ
hεIh

ε′

I = δε,ε′ .

With ε′ = 0, this shows that all hεI , ε 6= 0, have zero integral, and for two different ε, ε′ ∈
{0, 1}d \ {0}, we see that we have produced 2d − 1 orthonormal, hence linearly independent,
functions in R(DQ).

4.2. Definition and basic properties of dyadic shifts. A dyadic shift with parameters (m,n)
is an operator of the following form:

Xf =
∑
K∈D

AKf, AKf =
∑

I,J∈D, I,J⊆K
`(I)=2−m`(K)

`(J)=2−n`(K)

aIJK〈f, hI〉hJ ,

where the aIJK are constants with the normalization

|aIJK | ≤
√
|I||J |
|K|

,

and each hI is one of the Haar functions hεI , ε ∈ {0, 1}d \ {0}, as just defined.
The symbol X is the Cyrillic capital letter ‘sha’ (for ‘shift’). As an operator, X is a sum of

component AK associated to all dyadic cubes K (intuitively, to all positions and length scales).
And each aK has an expression in terms of the Haar functions hI and hJ , where I, J ⊆ K are
dyadic subintervals, smaller than K by a fixed factor determined by the shift parameters. We
record some basic observations:

Lemma 4.1.
|AKf | ≤ 1K

1
|K|

ˆ
K

|f |.

Proof. Using the bound for aIJK and |hI | ≤ 1I/
√
|I|, we have

|AKf | ≤
∑

I,J∈D, I,J⊆K
`(I)=2−m`(K)

`(J)=2−n`(K)

√
|I||J |
|K|

·
ˆ
I

|f | 1√
|I|
· 1J√
|J |

=
1
|K|

∑
I∈D, I⊆K

`(I)=2−m`(K)

ˆ
I

|f |
∑

J∈D, J⊆K
`(J)=2−n`(K)

1J =
1
|K|

ˆ
K

|f | · 1K ,
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since dyadic cubes of fixed sidelength are disjoint. �

Corollary 4.1.
‖AKf‖p ≤ ‖f‖p, ∀p ∈ [1,∞].

Proof.

‖AKf‖p ≤
∥∥∥1K

1
|K|

ˆ
K

|f |
∥∥∥
p

= |K|1/p 1
|K|
‖1Kf‖1 ≤ |K|1/p

1
|K|
|K|1/p

′
‖f‖p = ‖f‖p. �

Lemma 4.2.
‖Xf‖2 ≤ ‖f‖2.

Proof. We use the orthonormality of the Haar functions. Let

H m
K := span{hI : I ⊆ K, `(I) = 2−m`(K)},

and let PmK be the orthogonal projection of L2 onto this subspace. For a fixed m, these spaces are
orthogonal, as K ranges over D .

We have 〈f, hI〉 = 〈PmKf, hI〉 for all I appearing in AK , and hence AKf = AKPmKf . Also,
hJ = PnKhJ for all J appearing in AK , and hence AKf = PnKAKf . We can apply these identities
and Pythagoras’ theorem to the result that

‖Xf‖2 =
∥∥∥ ∑
K∈D

PnKAKPmKf
∥∥∥

2
=
( ∑
K∈D

‖PnKAKPmKf‖22
)1/2

≤
( ∑
K∈D

‖PmKf‖22
)1/2

≤ ‖f‖2,

where we used the L2 boundedness of AK in the second-to-last step. �

Remark 4.1. For the representation of general singular integrals, it is also necessary to consider
generalized dyadic shifts, where it is allowed that the hI or hJ may be of the non-cancellative
type, i.e., h0

I = |I|−1/2 · 1I or h0
J = |J |−1/2 · 1J . In this case, the result of the previous lemma is

not automatically true, unless stronger conditions on the coefficients aIJK are imposed. On the
other hand, many results about the shifts may be proven by allowing the non-cancellative Haar
functions, but requiring ‖Xf‖2 ≤ ‖f‖2 as an assumption.

4.3. The weak-type (1, 1) estimate for dyadic shifts. In practice, the weighted norm esti-
mates for singular-integral type operators always rely on some information about their behaviour
in the unweighted L1 space.

Proposition 4.1. Let X be a dyadic shift of parameters (m,n). Then

‖Xf‖L1,∞ . (1 +m)‖f‖L1 .

Proof. We need to prove that |{|f | > λ}| . (1 + m)‖f‖1/λ. This is a classical-style argument
based on the Calderón–Zygmund decomposition. Let B be the collection of maximal dyadic cubes
L ∈ D with the property that 〈|f |〉L > λ. Note that 〈|f |〉L ≤ |L|−1‖f‖1 → 0 as |L| → ∞, so this
property cannot hold for arbitrarily large cubes L, and the set B of maximal cubes is well defined.
We write the Calderón–Zygmund decomposition (observe the similarity to Lerner’s decomposition,
which used the median mf (L) instead of the mean 〈f〉L):

f =
(
f · 1Rd\

S
B +

∑
L∈B

1L〈f〉L
)

+
∑
L∈B

1L(f − 〈f〉L) =: g +
∑
L∈B

bL =: g + b.

If x ∈ Rd \
⋃

B, it means that all dyadic cubes Q containing x satisfy 〈|f |〉Q ≤ λ, hence by
Lebesgue’s theorem, also |g(x)| = |f(x)| ≤ λ almost everywhere on this set. If x ∈ L ∈ B, then

|g(x)| = |〈f〉L| ≤
1
|L|

ˆ
L

|f | ≤ 2d

|L̂|

ˆ
L̂

|f | ≤ 2dλ
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by the maximality of L. So altogether ‖g‖∞ ≤ 2dλ, and then

‖g‖22 =
ˆ
|g|2 ≤ ‖g‖∞

ˆ
|g| ≤ 2dλ

(ˆ
Rd\

S
B

|f |+
∑
L∈B

|B||〈f〉L|
)

≤ 2dλ
(ˆ

Rd\
S

B

|f |+
∑
L∈B

ˆ
L

|f |
)

= 2dλ‖f‖1.

We can then estimate

|{|Xf | > λ}| ≤ |{|Xg| > 1
2λ}|+ |{|Xb| > 1

2λ}|,
and

|{|Xg| > 1
2λ}| ≤

4
λ2
‖Xg‖22 ≤

4
λ2
‖g‖22 ≤

4
λ2

2dλ‖f‖1 = 2d+2 1
λ
‖f‖1,

which is a bound of the required form. Note that this only used the L2 boundedness of the operator
X, not its structure, which is typical for the estimation of the ‘good’ part in the Calderón–
Zygmund decomposition.

For the ‘bad’ part b, we argue as follows. Observe first that

Xb =
∑
K∈D

AK
∑
L∈B

bL =
∑
L∈B

∑
K∈D

AKbL.

Since AKbL = AK(1KbL) and bL is supported on L, we only need to consider cubes K with
K ∩ L 6= ∅, hence either K ⊆ L or L ⊂ K. But there is yet another reduction coming from the
fact that bL = 1L(f−〈f〉L) has integral zero. Namely, suppose that K ⊃ L and `(K) ≥ 2m+1`(L).
Then all the hI appearing in AK have `(I) = 2−n`(K) ≥ 2`(L). The Haar functions hI are constant
on all cubes of sidelength 2−1`(I) ≥ `(L), so in particular on L. Denoting by cIL this constant
valued, we have 〈bL, hI〉 =

´
bLcIL = cIL

´
bL = 0, and hence AKbL = 0. So among the big cubes

K ⊃ L, only those with K ⊆ L(m) may give a nonzero contribution AKbL. Hence

Xb =
∑
L∈B

( ∑
K⊆L

AKbL +
∑

K:L⊂K⊆L(m)

AKbL

)
.

Now a weaker version of the assertion could be obtained as follows: Note that all the terms
AKbL appearing above are supported on L(m), and hence

|{|Xb| > 1
2λ}| ≤ |{|Xb| > 0}| ≤

∣∣∣ ⋃
L∈B

L(m)
∣∣∣ ≤ ∑

L∈B

|L(m)|

= 2dm
∑
L∈B

|L| = 2dm

λ

∑
L∈B

ˆ
L

|f | ≤ 2dm
1
λ
‖f‖1.

So this would give the exponential factor 2md in place of the claimed m.
We argue slightly more carefully

|{|Xb| > 1
2λ}| ≤

∣∣∣{∣∣∣ ∑
L∈B

∑
K⊆L

AKbL

∣∣∣ > 0
}∣∣∣+

∣∣∣{ ∑
L∈B

∣∣∣ ∑
K:L⊂K⊆L(m)

AKbL

∣∣∣ > 1
2λ
}∣∣∣.

The first set on the right is contained in
⋃
L∈B L, so its measure is dominated by ‖f‖1/λ, by the

argument just given, but without the expansions L(m). So it remains to bound∣∣∣{∣∣∣ ∑
L∈B

∑
K:L⊂K⊆L(m)

AKbL

∣∣∣ > 1
2λ
}∣∣∣ ≤ 2

λ

∥∥∥ ∑
L∈B

∑
K:L⊂K⊆L(m)

AKbL

∥∥∥
1

≤ 2
λ

∑
L∈B

∑
K:L⊂K⊆L(m)

‖AKbL‖1

≤ 2
λ

∑
L∈B

∑
K:L⊂K⊆L(m)

‖bL‖1 ≤
2
λ

∑
L∈B

m‖bL‖1

≤ 4m
λ

∑
L∈B

‖1Lf‖1 ≤ 4m
1
λ
‖f‖1.
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This completes the proof. �

4.4. Local oscillations of a shift. We are finally in a position to tie together some of the
concepts developed in this section and the previous one.

Proposition 4.2 (Cruz-Uribe–Martell–Pérez 2010 [5]). Let X be a dyadic shift with parameters
(m,n). Then for λ ∈ (0, 1),

ωλ(Xf ;Q) .
(1 +m)2dn

λ

 
Q(n)
|f |.

Note that here we only get an exponential estimate in terms of the shift parameter n, and for
this reason, the result is not very helpful in estimating series of shifts with arbitrarily large shift
parameters (as they appear in the general representation formula for singular integral operators).
On the other hand, this result provides a rather direct and elegant route to some applications
involving shifts with small parameters only, in which case the exponential dependence causes no
trouble. In practice, this proposition is applied in companion with Lerner’s formula, where we take
λ ∈ {2−2, 2−d−2}; hence the factor λ−1 may be absorbed in the implicit dimensional constant.

To streamline the proof, we begin with a lemma, which will have another application later on
as well:

Lemma 4.3. For all p ∈ (1,∞), we have

g∗(t) ≤ ‖g‖Lp,∞t−1/p ≤ ‖g‖Lpt−1/p.

Proof. By definition,

g∗(t) = inf{α ≥ 0 : |{|g| > α}| ≤ t}.

Now if g ∈ Lp,∞, this means that α · |{|g| > α}|1/p ≤ ‖g‖Lp,∞ ; hence

|{|g| > α}| ≤ α−p‖g‖pLp,∞ ≤ t

at least for all α ≥ ‖g‖Lp,∞t−1/p. So the infimum of the admissible values of α for g∗(t) is at most
‖g‖Lp,∞t−1/p, exactly as claimed. �

Proof of Proposition 4.2. We write

1QXf = 1QX(1Q(n)f) + 1QX(1Rd\Q(n)f), (4.1)

where the latter term is

1QX(1Rd\Q(n)f) =
∑
K∈D

1QAK(1Rd\Q(n)f),

and only cubesK with Q∩K 6= ∅ 6= K\Q(n) need to be considered. This means thatK ⊇ Q(n+1).
But then all the hJ appearing in AK are constant on cubes of sidelength 2−n−1`(K) ≥ `(Q), so
in particular on Q. Thus the latter term on the right of (4.1) is actually a constant times 1Q.
Writing cQ for this constant, we conclude that

ωλ(Xf ;Q) = inf
c

(
1Q(Xf − c)

)∗(λ|Q|)
≤
(
1Q(Xf − cQ)

)∗(λ|Q|) =
(
1QX(1Q(n)f)

)∗(λ|Q|)
≤ 1
λ|Q|

‖X(1Q(n)f)‖L1,∞ (by Lemma 4.3)

.
2dn

λ|Q(n)|
(1 +m)‖1Q(n)f‖L1 (by Proposition 4.1). �
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4.5. The sharp weighted estimate for dyadic shifts. We are ready for the main result of
this section:

Theorem 4.1 (Lacey–Petermichl–Reguera 2010 [14]). Let X be a dyadic shift with parameters
(m,n). Then

‖Xf‖L2(w) ≤ Cd(m,n)[w]A2‖f‖L2(w).

The original proof of Lacey–Petermichl–Reguera was relatively complicated, but we will present
a simpler approach by Cruz-Uribe–Martell–Pérez, based on their Proposition stated above. Both
these proofs give a constant Cd(m,n), which is exponential in the shift parameters, and we will
stop paying attention to its precise value here. However, the more complicated Lacey–Petermicl–
Reguera approach has the advantage that it can be modified to yield a much better polynomial
dependence, which is necessary for applications to general singular integrals. At the time of writing,
it is not known if such an improvement is possible for the Cruz-Uribe–Martell–Pérez approach.

Proof of Theorem 4.1 by Cruz-Uribe–Martell–Pérez [5]. We consider a function f ∈ L2(w) ∩ L2

(the intersection of weighted and unweighted L2 spaces). This intersection includes in particular
all bounded compactly supported functions, so such f are dense in L2(w). By f ∈ L2, we know
that Xf ∈ L2 is a well-defined function, and we can compute the norm

‖Xf‖2L2(w) =
ˆ

Rd
|Xf |2w =

∑
ε

ˆ
Rdε
|Xf |2w,

where Rdε are the 2d quadrants of Rd. Fix one such quadrant, and consider an increasing sequence
of dyadic cubes QN which exhausts all Rdε , i.e., QN−1 ⊂ QN and

⋃∞
N=1QN = Rdε . By monotone

convergence, it would suffice to bound the L2(w) norm of 1QNXf , uniformly in N . In order to
make use of Lerner’s formula, we still want to subtract the median of Xf on this cube. And we
observe that for g = Xf ∈ L2, we have

|mg(QN )| ≤ (1QN g)∗(λ|QN |) (by Lemma 3.2, for λ ∈ (0, 1
2 ))

≤ 1√
λ|QN |

‖g‖L2 (by Lemma 4.3)

→ 0 as |QN | → ∞.

Hence we conclude that, on Rdε , we have

1QN
(
Xf −mXf (QN )

)
→Xf,

and hence ˆ
Rdε
|Xf |2w =

ˆ
Rdε

lim inf
N→∞

1QN |Xf −mXf (QN )|2w

≤ lim inf
N→∞

ˆ
Rdε

1QN |Xf −mXf (QN )|2w (by Fatou’s lemma)

≤ lim inf
N→∞

ˆ (
4M#

1/4,QN
(Xf) + 4

∑
k,j

ω2−d−2(Xf ; Q̂kj ) · 1Qkj
)2

w

(4.2)

by Lerner’s formula in the last step.
The first term is straightforward by what we already know:

M#
1/4,QN

(Xf) = sup
Q∈D(QN )

1Q · ω1/4(Xf ;Q) (definition of M#
1/4,QN

)

. sup
Q∈D(QN )

1Q ·
 
Q

(n)
N

|f | (Proposition 4.2)

≤Mf (definition of the usual maximal function M);
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note that we absorbed the dependence both the dimension and the shift parameters into the
implicit constant in the second step. By the previous pointwise estimate and the Muckenhoupt–
Buckley theorem, we now conclude that

‖M#
1/4,QN

(Xf)‖L2(w) . ‖Mf‖L2(w) . [w]A2‖f‖L2(w).

For the second term on the right of (4.2), we also get a pointwise bound from Proposition 4.2:∑
k,j

ω2−d−2(Xf ; Q̂kj ) · 1Qkj .
∑
k,j

 
(Q̂kj )(n)

|f | · 1Qkj =:
∑
k,j

 
Pkj

|f | · 1Qkj =: F,

where P kj := (Q̂kj )(n) = (Qkj )(n+1), and it remains to estimate ‖F‖L2(w). We do this with the help
of the duality

‖F‖L2(w) = sup
{ˆ

Fhw : ‖h‖L2(w) = 1
}
.

We manipulate the integral somewhat in the spirit of Lerner’s proof of the Muckenhoupt–Buckley
theorem (denote σ := w−1):ˆ

Fhw =
∑
k,j

1
|P kj |

ˆ
Pkj

|f | ·
ˆ
Qkj

hw

=
∑
k,j

1
σ(P kj )

ˆ
Pkj

(|f |w)σ · 1
w(Qkj )

ˆ
Qkj

hw ·
σ(P kj )
|P kj |

w(Qkj )
|Qkj |

· |Qkj |.
(4.3)

And we make the following estimates:

σ(P kj )
|P kj |

w(Qkj )
|Qkj |

≤ 2d(n+1)
σ(P kj )
|P kj |

w(P kj )
|P kj |

≤ 2d(n+1)[w]A2

and, by the properties of the cubes Qkj provided by Lerner’s theorem,

|Qkj | ≤ 2|Qkj \ Ωk+1| =: 2|Ekj |, Ωk+1 =
⋃
i

Qk+1
i .

Note that the sets Ekj are pairwise disjoint with respect to both k and j. Finally, for any x ∈
Ekj ⊆ Qkj , we have

1
σ(P kj )

ˆ
Pkj

(|f |w)σ ≤Mσ(|f |w)(x),
1

w(Qkj )

ˆ
Qkj

hw ≤Mw(h)(x)

by definition. Substituting these into (4.3) and absorbing the dependence on dimension and shift
parameters, we haveˆ

Fhw .
∑
k,j

inf
Ekj

Mσ(|f |w) · inf
Ekj

Mw(h) · |Ekj |

≤
∑
k,j

ˆ
Ekj

Mσ(|f |w)Mw(h)

≤
ˆ

Rd
Mσ(|f |w)Mw(h)σ1/2w1/2 (by disjointness of Ekj and σw = 1)

≤
( ˆ

Rd
Mσ(|f |w)2σ

)1/2(ˆ
Rd
Mw(h)2w

)1/2

(Cauchy–Schwarz)

.
( ˆ

Rd
(|f |w)2σ

)1/2(ˆ
Rd
h2w

)1/2

(universal maximal inequality)

=
( ˆ

Rd
|f |2w

)1/2

(by wσ = 1 and ‖h‖L2(w) = 1).

This completes the proof. �
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By an application of the extrapolation theory, we obtain the corresponding bounds in Lp(w),
p ∈ (1,∞). We recall the extrapolation theorem (both upper and lower extrapolation in the same
statement) in the following simpler form, which only takes into account the dependence of the
estimates on [w]Ap not on [w]A∞ . Consider an estimate of the form

‖Tf‖Lp(w) . [w]τ(p)
Ap
‖f‖Lp(w).

If T satisfies this for some p = r ∈ (1,∞) and all w ∈ Ar, then it satisfies this for all p ∈ (1,∞)
and all w ∈ Ap, with

τ(p) = max
{r − 1
p− 1

, 1
}
τ(r).

An application of this result with r = 2 and τ(2) = 1, in combination with Theorem 4.1 gives:

Corollary 4.2. Let X be a dyadic shift with parameters (m,n). Then

‖Xf‖Lp(w) ≤ Cd,p(m,n)[w]max{1,1/(p−1)}
Ap

‖f‖Lp(w).

By the representation theorem which we prove in the next section, this implies the same type
of estimate for the Hilbert transform H in place of X. And one can check for H, that the
dependence [w]max{1,1/(p−1)}

Ap
is the best possible; hence it must also be the best possible in the

above statement.

5. Representation of singular integrals by dyadic shifts

We now take up the question of representing classical singular integral operators with the help
of the dyadic shifts, in such a way that we can obtain sharp norm inequalities for these classical
operators from the work already done for shifts. A number of representation theorems of this type
are available. They all rely on the notion of random dyadic systems.

5.1. Random dyadic cubes. Let ω = (ωk)k∈Z ∈ Ω := ({0, 1}d)Z, and consider dyadic systems
of the form

Dω =
⋃
k∈Z

Dω
k , Dω

k =
{

2−k([0, 1)d +m) +
∑
j>k

2−jωj : m ∈ Z
}

=
{
I +

∑
j>k

2−jωj : I ∈ D0
k

}
,

i.e., Dω
k is obtained by translating the cubes in the standard system Dω

k by the truncated binary
expansion

∑
j>k

2−jωj ∈ 2−k[0, 1]d.

There is a natural way to introduce a probability measure of Ω: we require that the coordinates
ωk are independent, and P(ωk = η) = 2−d for each η ∈ {0, 1}d. A random choice of ω ∈
Ω then induces a random choice of a dyadic system Dω. We will be mostly concerned about
averages (expectations) of some functions of ω, taken with respect to the measure P over the
whole probability space Ω.

We will also be interested in dilated dyadic systems Dω,r := {rI : I ∈ Dω}, where

r

d∏
j=1

[aj , bj) :=
d∏
j=1

[raj , rbj),

for r ∈ [1, 2). We also take averages with respect to this parameter r, but with respect to the
measure dr/r. The average of f(r) would then be (log 2)−1

´ 2

1
f(r) dr, but we will drop the factor

(log 2)−1, as this is just a universal numerical constant, which is of no concern to us.
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5.2. Special shifts and their averages. We restrict our considerations to shifts of a particularly
simple structure, which permits an easy evaluation of the required averages. For a dyadic cube K,
write inf K for its “lower left” corner (i.e., the pointwise infimum separately in all coordinates).
Let

X =
∑
K∈D

γ(`(K))AK ,

where the γ(`(K)) are bounded coefficients, and all operators AK are obtained from

A[0,1)df(x) =: A0f(x) =
ˆ
a(x, y)f(y) dy, supp a ⊆ [0, 1]d × [0, 1]d,

by

AKf(x) =
ˆ

[0,1)d

1
|K|

a
(x− inf K

`(K)
,
y − inf K
`(K)

)
f(y) dy.

It is easy to see that if A0 is of the form required by the definition of a shift, then so are all AK .
We consider shifts of this type associated to different dyadic systems D = Dω,r. Let us write

explicitly
Xω,r =

∑
K∈Dω,r

γ(`(K))AK .

Since all Xω,r are uniformly bounded operators on L2 (and by the results of the previous sec-
tion, on all Lp(w) for p ∈ (1,∞) and w ∈ Ap) it is formally clear that so is their average´ 2

1

´
Ω

Xω,r dP(ω) dr/r. Let us be a bit more precise about the existence of these integrals.
Let us define the averaging operators

Eω,rk f :=
∑

Q∈Dω,r
k

1Q〈f〉Q.

Then one readily observes the following identity for a Haar function hJ , J ∈ Dω,r:

Eω,rk hJ =

{
hJ , `(J) > r2−k

0, `(J) ≤ r2−k.

The reason is simple: hJ is constant on cubes smaller than J , so the averaging has no effect, and´
hJ = 0, so averaging over cubes equal to or larger than its support results in zero. If Xω,r has

shift parameters (m,n), it follows that (recall that the hJ appearing in AK have `(J) = 2−n`(K))∑
K∈Dω,r

2−s<`(K)/r≤2−t

γ(`(K))AKf = (Eω,rs+n − Eω,rt+n)Xω,rf −→
s→+∞
t→−∞

Xω,rf, (5.1)

where the convergence takes place pointwise for Xω,rf ∈ L1
loc, in particular, when f ∈ Lp(w) for

p ∈ (1,∞) and w ∈ Ap. Since Eω,rs g ≤ Mg and the maximal operator is bounded on Lp(w), the
convergence also takes place in Lp(w). Parameterizing the cubes K ∈ Dω,r on the left of (5.1) as

K = r(L+ ω(`(L))), ω(`(L)) :=
∑

j:2−j<`(L)

2−jωj , L ∈ D0,

it can be written as∑
K∈Dω,r

2−s<`(K)/r≤2−t

γ(`(K))AKf(x) =
∑
L∈D0

2−s<`(L)≤2−t

γ(r`(L))Ar(L+ω(`(L)))f(x),

=
∑
K∈D0

2−s<`(L)≤2−t

γ(r`(K))
rd|L|

ˆ
a
(x/r − inf L− ω(`(L))

`(L)
,
y/r − inf L− ω(`(L))

`(L)

)
f(y) dy.

Every term here is jointly measurable with respect to (ω, r, x) ∈ Ω× [1, 2)× Rd; hence so is their
sum as well the limit in (5.1).
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So Xω,rf(x) is jointly measurable, and we have
ˆ

Rd

(ˆ
Ω

ˆ 2

1

|Xω,rf(x)| dr
r

dP(ω)
)p
w(x) dx

.
ˆ

Rd

ˆ
Ω

ˆ 2

1

|Xω,rf(x)|p dr
r

dP(ω)w(x) dx (by Jensen)

=
ˆ

Ω

ˆ 2

1

ˆ
Rd
|Xω,rf(x)|pw(x) dx

dr
r

dP(ω) (by Fubini)

.
ˆ

Ω

ˆ 2

1

[w]max{1,1/(p−1)}p
Ap

ˆ
Rd
|f(x)|pw(x) dx

dr
r

dP(ω) (by Corollary 4.2)

. [w]max{1,1/(p−1)}p
Ap

ˆ
Rd
|f(x)|pw(x) dx (integrating out ω and r).

(5.2)

So in particular the integral

Tf(x) :=
ˆ

Ω

ˆ 2

1

Xω,rf(x)
dr
r

dP(ω)

exists for almost every x ∈ Rd, and defines a bounded operator on Lp(w), of norm at most a
constant times [w]max{1,1/(p−1)}

Ap
. It remains to see which classical operators can be obtained in

this way.

5.3. Alternative representation of the average. Recall (5.1), and the subsequent observation
that these truncated shifts are pointwise dominated by M(Xω,rf)(x). By essentially the same
computation as in (5.2), using the boundedness on Lp(w) of both M and Xω,r, we find that

ˆ
Ω

ˆ 2

1

M(Xω,rf)(x)
dr
r

dP(ω) <∞

at almost every x ∈ Rd. This justifies the use of dominated convergence to deduce from (5.1) that

Tf(x) = lim
b→+∞
a→−∞

ˆ
Ω

ˆ 2

1

∑
K∈Dω,r

2−s<`(K)/r≤2−t

γ(`(K))AKf(x)
dr
r

dP(ω)

= lim
b→+∞
a→−∞

b−1∑
k=a

ˆ 2

1

ˆ
Ω

∑
L∈D0

k

γ(r2−k)Ar(2−kL+ω(`(L)))f(x) dP(ω)
dr
r
.

(5.3)

To proceed with the evaluation, observe that ω(`(L)) = ω(2−k) =
∑
j>k 2−jωj ranges (uniformly)

over 2−k[0, 1]d as ω ∈ Ω, and also write L ∈ D0
k as L = 2−k[0, 1)d +m, with m ∈ Zd. Thenˆ

Ω

∑
L∈D0

k

γ(r2−k)Ar(2−kL+ω(`(L)))f(x) dP(ω)

=
ˆ

[0,1)d

∑
m∈Zd

γ(t)At([0,1)d+m+u)f(x) du, t := 2−kr

=
ˆ

[0,1)d

∑
m∈Zd

γ(t)
td

ˆ
a
(x
t
−m− u, y

t
−m− u

)
f(y) dy du.

Observing that u+m ranges over Rd as u ∈ [0, 1)d and m ∈ Zd, we can continue

=
ˆ

Rd

γ(t)
td

ˆ
a
(x
t
− u, y

t
− u
)
f(y) dy du =

γ(t)
td

ˆ ˆ
Rd
a
(x
t
− u, y

t
− u
)

duf(y) dy

=
γ(t)
td

ˆ ˆ
Rd
a
(x− y

t
+ z, z

)
dzf(y) dy =:

γ(t)
td

ˆ
ã((x− y)/t)f(y) dy.
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It is easy to justify the changes in the integration order, since |a(x, y)| ≤ 1[0,1]d(x)1[0,1]d(y), so
that

|ã(x)| ≤
ˆ
|a(x+ z, z)|dz ≤

ˆ
[0,1)d

1[0,1)d(x+ z) dz ≤ 1[−1,1]d(x).

Substituting back to (5.3) and using
b−1∑
k=a

ˆ 2

1

F (r2−k)
dr
r

=
b−1∑
k=a

ˆ 21−k

2−k
F (t)

dt
t

=
ˆ 21−a

21−b
F (t)

dt
t
,

we have
Tf(x) =

ˆ ∞
0

γ(t)
td

ˆ
Rd
ã
(x− y

t

)
f(y) dy

dt
t
,

where the outer integral should be understood as the limit of
´ 2−a

2−b
as a→ +∞ and b→ −∞.

Finally, suppose that x /∈ supp f , which means that |x − y| ≥ δ > 0 for all y appearing in the
above integral. We claim that in this case the integral converges absolutely. Indeed,ˆ ∞

0

∣∣∣γ(t)
td

ã
(x− y

t

)∣∣∣ dt
t
≤
ˆ ∞
c|x−y|

‖γ‖∞
dt
td+1

.
‖γ‖∞
|x− y|d

,

and y 7→ |x−y|−d ·1|x−y|≥δ is in Lp
′
(σ), so that this function can be integrated against f ∈ Lp(w)

(exercise). We summarize our observations in the following:

Proposition 5.1. Let

Tf(x) :=
ˆ

Ω

ˆ 2

1

Xω,rf(x)
dr
r

dP(ω), Xω,r =
∑

K∈Dω,r

γ(`(K))AK ,

where
AKf(x) =

ˆ
[0,1)d

1
|K|

a
(x− inf K

`(K)
,
y − inf K
`(K)

)
f(y) dy.

Then the integral defining T exists for all f ∈ Lp(w) and almost every x ∈ Rd, and defines a
bounded linear operator on Lp(w) with

‖Tf‖Lp(w) . [w]max{1,1/(p−1)}
Ap

‖f‖Lp(w).

For x /∈ supp f , we have the formula

Tf(x) =
ˆ

Rd
K(x− y)f(y) dy, K(x) :=

ˆ ∞
0

γ(t)ã
(x
t

) dt
td+1

, ã(x) :=
ˆ

Rd
a(x+ z, z) dz.

So we have a weighted estimate for some convolution-type operators, but they are rather im-
plicitly described. It remains to determine, what type of kernels K can arise from the above
representation with different choices of a and γ.

5.4. Choosing a particular shift. We now specialize to dimension d = 1. Our approach is to
take one suitable fixed choice of the function a, but then make full use of the freedom to pick an
arbitrary γ ∈ L∞(0,∞). Recall that a(x, y) should be the kernel of A[0,1), thus of the form

a(x, y) =
∑

I,J∈D, I,J⊆[0,1)

`(I)=2−m, `(J)=2−n

aIJhI(y)hJ(x) (5.4)

for some m,n ∈ N. And the choice we make will be as follows:

a(x, y) := h(x)g(y),

where (denoting by ĥI := 1Ileft − 1Iright the L∞-normalized Haar function on I)

h = 7 · 1[0,1/4) − 1 · 1[1/4,1/2) + 1 · 1[1/2,3/4) − 7 · 1[3/4,1)

= 3 · ĥ[0,1) + 4 · (ĥ[0,1/2) + ĥ[1/2,1))

and
g = −1 · 1[0,1/4) + 1 · 1[1/4,3/4) − 1 · 1[3/4,1) = −ĥ[0,1/2) + ĥ[1/2,1).
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Thus

a(x, y) = 3
(
− ĥ[0,1/2) + ĥ[1/2,1)

)
(y)ĥ[0,1)(x)

+ 4
(
− ĥ[0,1/2) + ĥ[1/2,1)

)
(y)(ĥ[0,1/2) + ĥ[1/2,1)) =: a1(x, y) + a2(x, y)

is actually not precisely of the form (5.4), but it is a sum of two such kernels with parameters
(m,n) equal to (1, 0) and (1, 1). But it is clear that Proposition 5.1 also applies to such an a; the
convolution operator T is then simply the sum of averages of shifts of type (1, 0) and (1, 1), but
both of them satisfy the required bounds, and hence so does the sum.

5.5. Some computations. In the unit square [0, 1)× [0, 1), the function a(x, y) looks as follows,
where each small square in the figure has sidelength 1/4:
−7 1 −1 7
7 −1 1 −7
7 −1 1 −7
−7 1 −1 7

To compute ã(x) =
´
a(x+ z, z) dz, we start from the point (x, 0) on the x-axis, and integrate

the values of a along the line of slope 1 starting from this point. In order that this line meets
the unit square, it is necessary that x ∈ [−1, 1]. For x = j 1

4 , j ∈ Z, the line crosses only full
1
4 ×

1
4 -squares in the above figure, and we easily find the following values:
x −1 −3/4 −1/2 −1/4 0 1/4 1/2 3/4 1

ã(x) 0 −7/4 2 5/4 0 −5/4 −2 7/4 0
It is also not difficult to see that ã is piecewise linear between these values. We observe that

ã is an odd function, ã(−x) = −ã(x). Its derivative is the piecewise constant even function (the
constants being the slopes of ã) given in a neighbourhood of the positive axis by

ã′ = −5 · 1(0,1/4) − 3 · 1(1/4,1/2) + 15 · 1(1/2,3/4) − 7 · 1(3/4,1) on R+,

and its second derivative, in the distributional sense, it the a combination of Dirac masses at the
discontinuities of ã′, the coefficients being equal to the size of the jumps at these points:

ã′′ = 2δ1/4 + 18δ1/2 − 22δ3/4 + 7δ1 on R+.

With d = 1, our formula for the kernel K form Proposition 5.1 reads as

K(x) =
ˆ ∞

0

γ(t)ã(
x

t
)

dt
t2
.

Obviously K is also odd when ã is, so we only need to consider x > 0. Then, writing ã as an
integral of its derivative, we have

ã(
x

t
) = −

ˆ ∞
x

ã′(
y

t
)

dy
t

=
ˆ ∞
x

ˆ ∞
y

ã′′(
z

t
)

dz
t

dy
t
,

we have

K(x) =
ˆ ∞
x

ˆ ∞
y

( ˆ ∞
0

γ(t)ã′′(
z

t
)

dt
t4

)
dz dy =

ˆ ∞
x

ˆ ∞
y

K ′′(z) dz dy,

K ′′(x) =
ˆ ∞

0

γ(t)ã′′(
x

t
)

dt
t4

=
ˆ ∞

0

γ(
x

s
)ã′′(s)

s2 ds
x3

,

x3K ′′(x) =
ˆ ∞

0

γ(
x

s
)
(
2δ1/4(s) + 18δ1/2(s)− 22δ3/4(s) + 7δ1(s)

)
s2 ds

= 2γ(4x)(
1
4

)2 + 18γ(2x)(
1
2

)2 − 22γ(
4
3
x)(

3
4

)2 + 7γ(x)

=
1
8
γ(4x) +

9
2
γ(2x)− 99

8
γ(

4
3
x) + 7γ(x).

(5.5)

Since γ ∈ L∞(0,∞), it is clear that x 7→ x3K ′′(x) needs to be in this same space. A key point is
that we can choose it to be any function in L∞(0,∞), by a suitable choice of γ.
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5.6. Solving a functional equation. To put the problem of finding a suitable γ into an appro-
priate framework, we introduce a bit of notation. On the space L∞(0,∞), let ∆a be the operator
given by

∆af(x) := f(ax), a, x > 0.

It is immediate that ∆a is a bounded linear operator on L∞(0,∞), of norm ‖∆a‖ = 1, and
invertible with ∆−1

a = ∆a−1 . Also, ∆a∆b = ∆ab for any a, b > 0.
Consider a functional equation of the form

k∑
i=0

bi∆aiγ = m, (5.6)

where m ∈ L∞(0,∞) is a given function, ai > 0 and bi ∈ C are given coefficients, and we should
solve this for the unknown function γ. Here is a sufficient condition for the existence of a solution:

Lemma 5.1. Suppose that the coefficients satisfy

|b0| >
k∑
i=1

|bi|.

Then (5.6) has a unique solution γ ∈ L∞(0,∞), for any given m ∈ L∞(0,∞) and any ai > 0.

Proof. We can rewrite (5.6) as

m = b0∆a0γ +
k∑
i=1

bi∆aiγ

= b0∆a0

(
I +

k∑
i=1

bi
b0

∆ai/a0

)
γ =: b0∆a0(I + T )γ,

(5.7)

where I is the identity operator, and T is defined by the last equality. For the operator norm of
T , we can estimate

‖T‖ ≤
k∑
i=1

∣∣∣ bi
b0

∣∣∣‖∆ai/a0‖ =
1
|b0|

k∑
i=1

|bi| < 1.

It is then a general fact from Functional Analysis that the operator I + T is invertible. Indeed,
the series

∞∑
j=0

(−1)jT j

converges to an operator, which is easily checked to be the inverse of I + T . Hence (5.7) has the
unique solution

γ = b−1
0 (I + T )−1∆1/a0m. �

In the particular case of solving

m(x) =
1
8
γ(4x) +

9
2
γ(2x)− 99

8
γ(

4
3
x) + 7γ(x),

we have
99
8
−
(1

8
+

9
2

+ 7
)

= 12 +
3
8
−
(1

8
+ 4 +

1
2

+ 7
)

=
3
4
> 0,

so this particular equation can be solved for every m ∈ L∞(0,∞).
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5.7. Vagharshakyan’s representation theorem. Combining the results of this section, we
have now proven the following:

Theorem 5.1 (Vagharshakyan 2010 [26]). Let K : R \ {0} → C be a twice differentiable kernel
with

K(−x) = −K(x), |x ·K(x)|+ |x2 ·K ′(x)|+ |x3 ·K ′′(x)| ≤ C. (5.8)
Then there exists an operator T , bounded on all Lp(w) for p ∈ (1,∞) and w ∈ Ap, which has the
representations

Tf(x) =
1∑

n=0

cn

ˆ 2

1

ˆ
Ω

Xω,r
n f(x) dP(ω)

dr
r

for a.e. x ∈ R,

=
ˆ

R
K(x− y)f(y) dy for a.e. x /∈ supp f,

where Xω,r
n is a dyadic shift of parameters (1, n), associated with the dyadic system Dω,r. In

particular, this T satisfies

‖Tf‖Lp(w) . [w]max{1,1/(p−1)}
Ap

‖f‖Lp(w) ∀p ∈ (1,∞), ∀w ∈ Ap. (5.9)

Indeed, if K is as in the assumption (5.8), so in particular 7→ x3 ·K ′′(x) ∈ L∞(0,∞), and we
have shown the existence of γ ∈ L∞(0,∞), which solves (5.5). The assumption (5.8) also implies
that K(x),K ′(x)→ 0 as x→∞, and hence K itself can be recovered as

K(x) =
ˆ ∞
x

ˆ ∞
y

K ′′(z) dz dy =
ˆ ∞

0

γ(t)ã(
x

t
)

dt
t2
,

and this suffices for the existence of T as claimed in the Theorem, as shown in Proposition 5.1.

Corollary 5.1 (Vagharshakyan 2010 [26]). Let T be any bounded linear operator on L2(R) such
that

Tf(x) =
ˆ

R
K(x− y)f(y) dy for a.e. x /∈ supp f

for a twice differentiable kernel satisfying (5.8). Then (5.9) holds.

The difference compared to Theorem 5.1 is that we claim the weighted bound (5.9) for all
operators with kernel K, not just one such operator. However, it turns out that this difference
is not very big, for the kernel almost uniquely specifies the operator. We state without proof
the following result from the general theory of singular integral operators. It is not particularly
difficult, but would take us a little away from the main line of these lectures:

Proposition 5.2. Suppose that T is a bounded linear operator on some Lp (or even just from Lp

to Lp,∞) with kernel 0, i.e.,

Tf(x) = 0 for a.e. x /∈ supp f.

Then T is a multiplication operator given by Tf(x) = b(x)f(x) for some b ∈ L∞.

Proof of Corollary 5.1. Let T be as in Corollary 5.1, and let T0 be the operator with the same
kernel provided by Theorem 5.1. Then T − T0 is bounded on L2 and has kernel 0, thus by
Proposition 5.2, we have (T − T0)f = bf for some b ∈ L∞, and hence

‖Tf‖Lp(w) ≤ ‖T0f‖Lp(w) + ‖bf‖Lp(w) . [w]max{1,1/(p−1)}
Ap

‖f‖Lp(w) + ‖b‖L∞‖f‖Lp(w)

. [w]max{1,1/(p−1)}
Ap

‖f‖Lp(w),

using ‖b‖L∞ . 1 ≤ [w]max{1,1/(p−1)}
Ap

in the last step. �

Corollary 5.2 (Petermichl 2007 [21]). Let H be the Hilbert transform given by

Hf(x) = lim
ε→0

ˆ
|x−y|>ε

f(y) dy
x− y

.
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Then
‖Hf‖Lp(w) . [w]max{1,1/(p−1)}

Ap
‖f‖Lp(w) ∀p ∈ (1,∞), ∀w ∈ Ap.

Proof. We use the known fact that H is bounded on L2. From the definition, it is clear that it has
kernel K(x) = 1/x which is easily checked to satisfy (5.8). Hence the result follows immediately
from Corollary 5.1. �

In fact, this earlier result of Petermichl can be obtained slightly more easily than as a corollary
of the more general result of Vagharshakyan. Namely, in this case x3 · K ′′(x) = 2, and it is
immediate to check that a suitable constant function γ solves (5.5), so the part of the argument
involving the solution of the general functional equation becomes unnecessary. Also it should be
observed that the rest of our proof of Theorem 5.1 and Corollary 5.1 goes back to Petermichl’s
original proof of Corollary 5.2.

For the Hilbert transform, it can in fact be shown that the average of the dyadic shifts provided
by Theorem 5.1 is precisely H, so the additional multiplication operator does not appear. This
observation is due to myself, and it was proven in the course “Martingales and Harmonic Analysis”
in Spring 2008, and published in [11].

6. Implications of the A∞ condition

Recall that A∞ is the largest of the Ap classes, so that Ap ⊆ A∞ for all p ∈ [1,∞]. In this
section, we investigate some consequences of the A∞ condition, in other words, properties common
to all Ap weights, irrespective of the value p.

6.1. The reverse Hölder inequality. It follows immediately from Hölder’s inequality thatffl
Q
w ≤

( ffl
Q
wr
)1/r for all r > 1. A remarkable consequence of the A∞ condition is that this

inequality can be reversed for small enough values of r. The qualitative result of this type is
classical, and goes back to Coifman and Fefferman (1974) [3].

Theorem 6.1. For w ∈ A∞, let r(w) := 1 + 2−d−3/[w]A∞ . Then(  
Q

wr(w)
)1/r(w)

≤ 2
 
Q

w.

Note that r(w)′ = 1 + 2d+3[w]A∞ .

Proof by A. de la Torre (unpublished). We use the dyadic maximal function on the dyadic sub-
cubes of a given Q0:ˆ

Q0

w1+ε ≤
ˆ
Q0

Md(w1Q0)εw =
ˆ ∞

0

εtε−1w(Q0 ∩ {Md(w1Q0) > t}) dt.

Let Qi be the maximal dyadic subcubes of Q0 with 〈w〉Qi > t. For t ≥ 〈w〉Q0 , these are necessarily
strict subcubes of Q0. Denoting by Q̂i the dyadic parent of Qi, we then have

w(Q0 ∩ {Md(w1Q0) > t}) =
∑
i

w(Qi) ≤
∑
i

w(Q̂i) ≤
∑
i

t|Q̂i| = 2dt
∑
i

|Qi|

= 2dt|{Q0 ∩Md(w1Q0) > t}|,

where w(Q̂i)/|Q̂i| ≤ t be the maximality of Qi. Henceˆ
Q0

w1+ε ≤
ˆ 〈w〉Q0

0

εtε−1w(Q0) dt+
ˆ ∞
〈w〉Q0

εtε2d|{Q0 ∩Md(w1Q0) > t}|dt

≤ 〈w〉εQ0
w(Q0) +

ε2d

1 + ε

ˆ
Q0

Md(w1Q0)1+ε.

So far we have not used that w ∈ A∞; we do it now. This condition says that 
Q

w ≤ [w]A∞ exp
( 

Q

logw
)
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for all cubes, and taking the supremum over Q 3 x, Q ⊆ Q0, that Md(w1Q0)(x) ≤M0(w1Q0)(x),
where M0 is the dyadic logarithmic maximal function. Henceˆ

Q0

Md(w1Q0)1+ε ≤ [w]1+ε
A∞

ˆ
Q0

M0(w1Q0)1+ε ≤ [w]1+ε
A∞
· e

ˆ
Q0

w1+ε,

so altogether  
Q0

w1+ε ≤
( 

Q0

w
)1+ε

+ 2d[w]1+ε
A∞

e · ε
1 + ε

 
Q0

w1+ε.

Under the a priori assumption that
ffl
Q0
w1+ε < ∞, it suffices to see that the last term can be

absorbed for ε = δd/[w]A∞ and δd = 1/cd sufficiently small. Indeed, with this choice,

2d[w]1+ε
A∞

e · ε
1 + ε

≤ 2dδd([w]A∞)δd/[w]A∞ · e ≤ 2dδdeδd/e · e,

where we used the elementary calculus fact that t1/t ≤ e1/e for t ≥ 1. Since e1/e · e < 4, the choice
of δd = 2−d−3 yields 2dδdeδd/e · e < 2−1, hence 

Q0

w1+ε ≤
( 

Q0

w
)1+ε

+
1
2

 
Q0

w1+ε, ε = 2−d−3/[w]A∞ ,

and the claim follows under the a priori higher integrability assumption.
The extra assumption may be lifted in various ways. For example, consider the piecewise

constant wk defined by wk(x) := 〈w〉R whenever x ∈ R and R is a dyadic subcube of Q0 with
`(R) = 2−k`(Q0). If Q is a dyadic subcube of Q0 with `(Q) > 2−k`(Q0), let Ri be the subcubes
of sidelength 2−k`(Q0) contained in it. Then, since t 7→ − log t is a convex function, 

Q

(− logwk) =
 
Q

∑
i

1Ri(− log〈w〉Ri) ≤
 
Q

∑
i

1Ri〈− logw〉Ri =
 
Q

(− logw).

Since also
ffl
Q
wk =

ffl
Q
w, we find that all the relevant A∞ constants of wk appearing in the previous

argument are dominated by those of w. Thus the proof under a priori higher integrability shows
that (  

Q0

w
r(w)
k

)1/r(w)

≤ 2
 
Q0

wk = 2
 
Q0

w,

and the pointwise convergence wk → w (Lebesgue’s differentiation theorem) and Fatou’s lemma 
Q0

wr(w) =
 
Q0

lim
k→∞

w
r(w)
k ≤ lim inf

k→∞

 
Q0

w
r(w)
k

complete the argument. �

Corollary 6.1 (Fefferman–Pipher 1997 [8]). Let w ∈ A∞. If Q is a cube and E ⊆ Q a measurable
subset, then

w(E)
w(Q)

≤ C
( |E|
|Q|

)δ
, (6.1)

where
C = 2, δ =

1
1 + 2d+3[w]A∞

.

Proof.
w(E)
w(Q)

=
1
〈w〉Q

 
Q

1Ew ≤
1
〈w〉Q

( 
Q

1r(w)′

E

)1/r(w)′( 
Q

wr(w)
)1/r(w)

≤ 1
〈w〉Q

( |E|
|Q|

)1/r(w)′

2
 
Q

w = 2
( |E|
|Q|

)δ
. �

Remark 6.1. The condition that (6.1) hold for some C, δ > 0, is one of the classical definitions
of w ∈ A∞. Indeed, we have just shown that (6.1) follows from our definition, and the converse
is also true (although we will not prove it here). The advantage of the definition that we use, in
view of quantitative estimates, is that it carries the unique A∞ constant [w]A∞ , whereas (6.1) in
the classical formulation involves two parameters C and δ.
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6.2. Comparison of singular integrals and maximal functions. The main topic of the
previous sections has been the domination of ‖Tf‖Lp(w) by ‖f‖Lp(w), where T is either a maximal
or a singular integral operator. For such questions, it was necessary that w ∈ Ap, for the same
exponent p for which we investigate this inequality. We now turn to a different type of problem of
comparing the norms ‖Tf‖Lp(w) and ‖Mf‖Lp(w). It turns out that only w ∈ A∞ is needed here,
irrespective of the value of p.

To be more precise, let us say that T is a Calderón–Zygmund operator if T is a bounded linear
operator on the unweighted L2 space, having the kernel representation

Tf(x) =
ˆ

Rd
K(x, y)f(y) dy, x /∈ supp f,

where K satisfies the standard estimates

|K(x, y)| ≤ C

|x− y|d

and, for some θ ∈ (0, 1],

|K(x+ h, y)−K(x, y)|+ |K(x, y + h)−K(x, y)| ≤ C|h|θ

|x− y|d+θ
, if |x− y| > 2|h|.

We fill further be interested in the truncated Calderón–Zygmund operators

Tεf(x) :=
ˆ
|x−y|>ε

K(x, y)f(y) dy

and the maximal truncations

T\f(x) := sup
ε>0

∣∣∣ˆ
|x−y|>ε

K(x, y)f(y) dy
∣∣∣.

We agree to use the `∞-metric |x− y| = maxi |xi − yi| here; this is convenient, since the “balls” of
this metric are the usual cubes, and it is easy to go back to the results for the Euclidean metric,
when needed. (E.g., one can check that the difference of T\f for the `∞ metric and T\f for the
Euclidean metric is pointwise dominated by the Mf .)

One of the main results of this section is the following theorem which, in its qualitative form,
again goes back to Coifman and Fefferman (1974) [3]:
Theorem 6.2. The following estimate holds for all p ∈ (0,∞), w ∈ A∞, and all bounded com-
pactly supported functions f on Rd, provided that the left side is finite:

‖T\f‖Lp(w) ≤ Cd · 21/p(1 + p) · [w]A∞‖Mf‖Lp(w)

6.3. Whitney decomposition, good-λ inequality. The proof of Theorem 6.2 will consist of
several steps. The main intermediate goal is to prove an estimate of the type

|{T\f > 2λ,Mf ≤ γλ}| ≤ Ce−c/γ |{T\f > λ}|, (6.2)

as well as a similar weighted estimate for w in place of the Lebesgue measure on both sides. Note
that e−c/γ → 0 rapidly as γ → 0; thus, the set {T\f > 2λ,Mf ≤ γλ}, which is obviously a subset
of {T\f > λ}, is only a very small fraction of it for small γ. Estimates of this type are commonly
referred to as “good-λ inequalities”.

It is not difficult to check that Ω := {T\f > λ} is an open set, and it is also a bounded set when
f is bounded and compactly supported. Thus we may make the following Whitney decomposition
of Ω: Let Qj be the maximal dyadic cubes with 3Qj ⊆ Ω. These are disjoint and cover Ω. By
maximality, it follows that 7Qj ⊃ 3Q̂j intersects Ωc. To prove (6.2), it suffices to prove1

|Q ∩ {T\f > 2λ,Mf ≤ γλ}| ≤ Ce−c/γ |Q| (6.3)

for all Q ∈ Qj . And here we may assume that there exists some x̃ ∈ Q with Mf(x̃) ≤ γλ,
for otherwise the set on the left is empty and the inequality is trivial. Also, we may pick some
x̄ ∈ 7Qj ∩ Ωc so that T\f(x̄) ≤ λ by definition of Ω.

1With γ on the right in place of e−c/γ , this estimate goes back to Coifman and Fefferman (1974) [3]. In the
stated form, it is due to Buckley (1993) [1]. Note that e−c/γ tends to 0 much faster than γ as γ → 0.
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Let

f = f · 120Q + f · 1(20Q)c =: f1 + f2.

Lemma 6.1. If γ ≤ γd, then
T\f2(x) ≤ 3

2λ, x ∈ Q.

Proof. We want to exploit the knowledge that T\f(x̄) ≤ λ for some x̄ ∈ 7Q. So let us write
ˆ
|y−x|>ε

K(x, y)f2(y) dy =
ˆ

|y−x|>ε
|y−xQ|>10`(Q)

K(x, y)f(y) dy

=
ˆ
|y−x̄|>20`(Q)+ε

K(x̄, y)f(y) dy

+
ˆ
|y−x̄|>20`(Q)+ε

[K(x, y)−K(x̄, y)]f(y) dy

+
ˆ

|y−x|>ε
|y−xQ|>10`(Q)
|y−x̄|≤20`(Q)+ε

K(x, y)f(y) dy =: I + II + III.

It is immediate that |I| ≤ T\f(x̄) ≤ λ. Next,

|II| ≤
ˆ
|y−x̄|>20`(Q)

C|x− x̄|θ

|y − x̄|d+θ
|f(y)|dy ≤

ˆ
|y−x̄|>20`(Q)

C`(Q)θ

|y − x̄|d+θ
|f(y)|dy

Splitting the integration over annuli 20 · 2j · `(Q) < |y− x̄| ≤ 40 · 2j · `(Q), we can easily dominate
the right side by C ·Mf(z) for any z with |z − x̄| < 20`(Q), and choosing z = x̃ we get

|II| ≤ C ·Mf(x̃) ≤ Cγλ.

Finally, in term III, we have both |y − x| > ε and |y − x| > |y − xQ| − |x − xQ| > 9`(Q), so
that |y − x| ≥ (ε+ `(Q))/2. Hence

|III| ≤
ˆ
|y−x̄|≤20(`(Q)+ε)

C

(`(Q) + ε)d
|f(y)|dy ≤ CMf(z)

for any z as before, and we get again |III| ≤ Cγλ by choosing z = x̃. Altogether, we have shown
that

T\f2(x) ≤ λ+ Cγλ ≤ 3
2λ

for any small enough γ. �

From the previous lemma and the subadditivity of T\, it follows that if T\f(x) > 2λ for some
x ∈ Q, then also T\f1(x) > 1

2λ. Thus we can estimate

|Q ∩ {T\f > 2λ,Mf ≤ γλ}| ≤ |Q ∩ {T\f1 >
1
2λ,Mf ≤ γλ}|, f1 = f · 120Q.

In other words, we have localized our problem into a neighbourhood of Q also inside the opera-
tor T\.

To proceed further, we resort to the Calderón–Zygmund decomposition of the function f1. For
some dimensional constant C1, let P ∈P be the maximal dyadic cubes with 〈|f1|〉P > C1γλ, and
write

f1 =
(
f1 · 1Rd\

S
P∈P P +

∑
P∈P

〈f1〉P · 1P
)

+
∑
P∈P

(f1 − 〈f1〉P )1P = g + b.

We have, as usual,

|Q ∩ {T\f1 >
1
2λ,Mf ≤ γλ}| ≤ |Q ∩ {T\g > 1

4λ,Mf ≤ γλ}|+ |Q ∩ {T\b > 1
4λ,Mf ≤ γλ}|.
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6.4. The good part g. As usual, we have |f1| ≤ C1γα on (
⋃
P∈P P )c by Lebesgue’s differentia-

tion theorem, and 〈|f1|〉P ≤ 2dC1γλ by maximality of P ; hence ‖g‖∞ ≤ Cγλ. In our specific situa-
tion, we can also make an observation concerning the support of g. Note that P ⊂ {Mf > C1γλ},
and consider x ∈ (40Q)c. Then

Mf1(x) = sup
R3x

1
|R|

ˆ
R

|f1| ≤
1
|10Q|

ˆ
20Q

|f | ≤ 2dMf(z), z ∈ 20Q,

since if
´
R
|f1| 6= 0, then R must intersect supp f1 ⊆ 20Q, and in this case `(R) ≥ 10`(Q). Recall

that we had some x̃ ∈ Q with Mf(x̃) ≤ λγ. Taking z = x̃, we find that Mf1(x) ≤ 2dγλ for
x ∈ (40Q)c. So if C1 ≥ 2d, we find that all x ∈ (40Q)c implies x /∈ P for any P , and hence

P ⊆ 40Q ∀P ∈P.

Thus also supp g ⊆ 40Q.
For a sharp estimation of T\g, we will require some relatively precise information about the

action of Calderón–Zygmund operators on bounded functions:

Lemma 6.2. Suppose that S is an operator such that ‖S‖Lp→Lp,∞ ≤ Cp for p ∈ [p0,∞). Then,
if h is a bounded function supported on a cube Q, then

|{|Sh| > α}| ≤ e−α/(Ce‖h‖∞)|Q|, α ≥ Ce‖h‖∞p0.

Remark 6.2. The operator S = T\ satisfies the norm growth assumption of this lemma with
p0 = 2. We take this (nontrivial) fact for granted for the moment. It is interesting that this sharp
unweighted estimate (with precise dependence on the exponent p) plays a role in obtaining sharp
weighted estimates (with precise dependence on [w]Ap or another related quantity).

Proof of Lemma 6.2. By definition,

α|{|Sh| > α}|1/p ≤ ‖Sh‖Lp,∞ ≤ Cp‖h‖Lp ≤ Cp‖h‖L∞ |Q|1/p;
thus

|{|Sh| > α}| ≤
(Cp‖h‖∞

α

)p
|Q|.

Choosing p = α/(Ce‖h‖∞) ≥ p0 completes the proof. �

We apply Lemma 6.2 to h = g and 40Q in place of Q. Recall that ‖g‖∞ ≤ Cγλ. With
α = 1

4λ ≥ Ce‖g‖∞ in Lemma 6.2, we obtain

|{T\g > 1
4λ}| ≤ e

−c/γ |40Q| = Ce−c/γ |Q|,
as required.

6.5. The bad part b. We turn our attention to

b =
∑
P∈P

bP =
∑
P∈P

(f1 − 〈f1〉P )1P ,

where we recall that 〈|f1|〉P > C1γλ. The claim is that

|Q ∩ {T\b > 1
4λ,Mf ≤ γλ}| ≤ Ce−c/γ |Q|. (6.4)

We first observe that
{Mf ≤ γλ} ⊆

( ⋃
P∈P

2P
)c
. (6.5)

Indeed, if x ∈ 2P , then

Mf(x) ≥ 1
|2P |

ˆ
2P

|f | ≥ 2−d

|P |

ˆ
P

|f1| > 2−dC1γλ ≥ γλ

if C1 ≥ 2d. This proves (6.5), and hence proving (6.4) is reduced to showing∣∣∣Q ∩ ( ⋃
P∈P

2P
)c
∩ {T\b > 1

4λ}
∣∣∣ ≤ Ce−c/γ |Q|. (6.6)

This is the final part in the proof of (6.3).
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Lemma 6.3. For x ∈
(⋃

P∈P 2P
)c, we have

T\b(x) ≤ Cγλ
(

1 +
∑
P∈P

∞∑
j=0

13jP (x) · 3−j(d+θ)
)

=: Cγλ(1 + φ).

Proof. For given x and ε > 0, we first investigate

Tεb(x) =
∑
P∈P

TεbP (x)

=
∑
P∈P

ε<d(x,P )

TεbP (x) +
∑
P∈P

d(x,P )≤ε≤d(x,P )+`(P )

TεbP (x) +
∑
P∈P

ε>d(x,P )+`(P )

TεbP (x). (6.7)

In the first sum on the right, we have

TεbP (x) =
ˆ
|x−y|>ε

K(x, y)bP (y) dy =
ˆ
K(x, y)bP (y) dy

=
ˆ

[K(x, y)−K(x, xP )]bP (y) dy,

where we dropped the constraint |x− y| > ε, since this is satisfied for every y ∈ supp bP ⊆ P , and
we used the fact that

´
bP = 0 in the last step to introduce the constant K(x, xP ), where xP is

the centre of P . This leads to the estimate

|TεbP (x)| ≤
ˆ

C|y − xP |θ

|x− xP |d+θ
|bP (y)|dy ≤ C`(P )θ

|x− xP |d+θ
‖bP ‖1 ≤ Cγλ

`(P )θ

|x− xP |d+θ
|P |,

where the last step follows readily from the definition of the component bP in the Calderón–
Zygmund decomposition.

In the second sum on the right of (6.7), we make the simpler estimate (recall that x /∈ 2P , so
that |x− y| h |x− xP | for all y ∈ P )

|TεbP (x)| ≤
ˆ
|K(x, y)bP (y)|dy ≤ C

|x− xP |d
‖bP ‖1 ≤

Cγλ|P |
(d(x, P ) + `(P ))d

≤ C

εd
|P |.

Moreover, in this term we have 1
2`(P ) ≤ d(x, P ) ≤ ε, so P is contained in a cube of centre x and

sidelength 6ε. Since all the cubes P ∈P are also pairwise disjoint, we conclude that∑
P∈P

d(x,P )≤ε≤d(x,P )+`(P )

|TεbP (x)| ≤
∑
P∈P

d(x,P )≤ε≤d(x,P )+`(P )

C

εd
|P | ≤ C

εd
(6ε)d ≤ C.

Finally, in the third sum on the right of (6.7), the sets {y : |y − x| > ε} and P do not intersect
(since |x− y| ≤ d(x, P ) + `(P ) ≤ ε for all y ∈ P ), and hence TεbP (x) = 0.

Altogether then we have shown that

|Tεb(x)| ≤ Cγλ
( ∑
P∈P

`(P )θ|P |
|x− xP |d+θ

+ 1
)
, x /∈

⋃
P∈P

2P,

and we may take the supremum over ε > 0 of the left side to get the same upper bound for T\b(x).
It only remains to express the function on the right in somewhat different terms. Note that

`(P )θ|P | = `(P )d+θ. We have

1(2P )c(x)
( `(P )
|x− xP |

)d+θ

≤
∞∑
j=1

13jP\3j−1P (x)
( `(P )

3j−1`(P )

)−d−θ
≤ C

∞∑
j=0

13jP (x) · 3−j(d+θ),

and this clearly completes the proof of the lemma. �

With the previous Lemma, the proof of (6.6) is again reduced further, as we find that∣∣∣Q ∩ ( ⋃
P∈P

2P
)c
∩ {T\b > 1

4λ}
∣∣∣ ≤ |Q ∩ {Cγλ(1 + φ) > 1

4λ}| ≤ |Q ∩ {φ > c/γ}|
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when γ is small enough. And we would like to prove that

|Q ∩ {φ > c/γ}| ≤ Ce−c/γ |Q|. (6.8)

Such local exponential integrability is typical of BMO functions, which motivates the following
lemma:

Lemma 6.4. Let P ⊂ D be any disjoint collection of dyadic cubes in Rd. Then

φ :=
∑
P∈P

∞∑
j=0

13jP · 3−j(d+θ) ∈ BMOd (the dyadic BMO)

with ‖φ‖BMOd . 1, independent of P.

Proof. Let R be a dyadic cube. Note that 3jP is a union of 3jd dyadic cubes of the same size
as P . For `(P ) ≥ `(R), it follows that either R ⊂ 3jP or R ∩ 3jP = ∅; in either case, 13jP is
constant on R.

Consider then `(P ) < `(R) with P ∩3R = ∅. Let j be the smallest integer such that 3jP ∩R 6=
∅. Since 3jP intersects both R and P ⊂ (3R)c, we have (measuring distance in the `∞-sense, so
that the “diameter” of a cube is equal to its sidelength) `(3jP ) ≥ dist(P,R) ≥ `(R). Since 3jP
intersects R and `(3jP ) ≥ `(R), it follows that 3kP ⊃ R for all k > j. So the smallest integer j,
say jP , with 3jP ∩R 6= ∅ is the only j (if any) for which 13jP is not constant on R. Altogether,
we find that

1Rφ = 1R
∑
P∈P

`(P )<`(R)
P⊂3R

∑
j

13jP 3−j(d+θ) + 1R
∑
P∈P

`(P )<`(R)
P∩3R=∅

13jP P 3−jP (d+θ) + 1RcR,

and hence, using 3jP `(P ) ≥ dist(P,R) ≥ 1
2 (`(R) + dist(P,R)) in the second sum,ˆ

R

|φ− cR| ≤
∑
P∈P

`(P )<`(R)
P⊂3R

∑
j

|3jP |3−j(d+θ) + |R|
∑
P∈P

`(P )<`(R)
P∩3R=∅

3−jP (d+θ)

≤
∑
P∈P

`(P )<`(R)
P⊂3R

∑
j

|P |3−jθ + |R|
∑
P∈P

`(P )<`(R)
P∩3R=∅

( 2`(P )
`(R) + dist(P,R)

)d+θ

.
∑
P∈P

`(P )<`(R)
P⊂3R

|P |+ |R|
∑
P∈P

`(P )<`(R)
P∩3R=∅

|P | · `(R)θ

(`(R) + dist(P,R))d+θ

. |R|+ |R|
∑
P∈P

`(P )<`(R)
P∩3R=∅

|P | inf
x∈P

`(R)θ

(`(R) + dist(x,R))d+θ

. |R|+ |R|
ˆ

Rd

`(R)θ

(`(R) + dist(x,R))d+θ
dx . |R|+ |R|

ˆ ∞
0

`(R)θtd−1 dt
(`(R) + t)d+θ

. |R|. �

We are ready to prove (6.8). From the previous Lemma and the John–Nirenberg inequality, it
follows that

|Q ∩ {|φ− 〈φ〉Q| > λ}| ≤ Ce−cλ|Q|,
and of course we have

|Q ∩ {φ > c/γ}| ≤ |Q ∩ {|φ− 〈φ〉Q| > c/γ − |〈φ〉Q|}| ≤ Ce−c/γ+c|〈φ〉Q||Q|.
It only remains to check that |〈φ〉Q| ≤ C: We have

〈φ〉Q ≤
1
|Q|
‖φ‖1 =

1
|Q|

∑
P∈P

∞∑
j=0

3−j(d+θ)|3jP | = 1
|Q|

∑
P∈P

|P |
∞∑
j=0

3−jθ ≤ C

|Q|
∑
P∈P

|P |,
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and recalling that the cubes P are disjoint and contained in 40Q completes the estimate.

Remark 6.3. The exponential integrability estimate for the function φ goes back to Carleson’s
(1966) [2] proof of the almost-everywhere convergence of Fourier series.

So we have now completed the proof of (6.6), thus of (6.4), and this in turn was the last missing
part of the proof of (6.3), which we repeat here:

|Q ∩ {T\f > 2λ,Mf ≤ γλ}| ≤ Ce−c/γ |Q|. (6.9)

6.6. Completion of the proof of Theorem 6.2. We combine Corollary 6.1 with (6.9): for
E := Q ∩ {T\f > 2λ,Mf ≤ γλ}, where we choose γ := γd/[w]A∞ , we have

w(E)
w(Q)

≤ 2
( |E|
|Q|

)1/(cd[w]A∞ )

≤ 2(Ce−c/(γd[w]A∞ ))1/(cd[w]A∞ )

= 2C1/(cd[w]A∞ )e−c/(cdγd) ≤ 2C1/cde−c/(cdγd),

since [w]A∞ ≥ 1. The right side approaches zero as γd → 0, and hence we conclude that

w
(
Q ∩

{
T\f > 2λ,Mf ≤ γd,δ

[w]A∞
λ
})
≤ δw(Q) (6.10)

as soon as γd,δ is chosen small enough, depending only on the dimension d and the parameter δ.
In fact, one can readily check that

2C1/cde−c/(cdγd,δ) = δ ⇔ γd,δ =
c

cd log(2C1/cdδ−1)
(6.11)

Summing (6.10) over all cubes Q in the Whitney decomposition of {T\f > 2λ}), we obtain

w
(
T\f > 2λ,Mf ≤ γd,δ

[w]A∞
λ
)
≤ δw(T\f > λ). (6.12)

This is a powerful good λ inequality, which encodes a lot of information about the size of T\f . Its
typical application is to the estimation of Lp(w) norms, as in Theorem 6.2, as follows:

‖T\f‖pLp(w) =
ˆ ∞

0

pλp−1w(T\f > λ) dλ

= 2p
ˆ ∞

0

pλp−1w(T\f > 2λ) dλ

≤ 2p
ˆ ∞

0

pλp−1
[
w
(
T\f > 2λ,Mf ≤ γd,δ

[w]A∞
λ
)

+ w
(
Mf >

γd,δ
[w]A∞

λ
)]

dλ

≤ 2pδ
ˆ ∞

0

pλp−1w(T\f > λ) + 2p
( [w]A∞
γd,δ

)p ˆ ∞
0

pλp−1w(Mf > λ) dλ

≤ 2pδ‖T\f‖pLp(w) + 2p
( [w]A∞
γd,δ

)p
‖Mf‖pLp(w).

Hence, under the a priori assumption that ‖T\f‖Lp(w) <∞, we have

(1− 2pδ)‖T\f‖pLp(w) ≤ 2p
( [w]A∞
γd,δ

)p
‖Mf‖pLp(w).

Let us explicitly choose δ := 2−1−p, and γd,δ as in (6.11). Then

‖T\f‖Lp(w) ≤
2

(1− 2pδ)1/p

[w]A∞
γd,δ

‖Mf‖Lp(w)

≤ 2 · 21/p · [w]A∞
cd
c

log(2C1/cd21+p)‖Mf‖Lp(w)

≤ Cd · 21/p(1 + p)[w]A∞‖Mf‖Lp(w).

which is exactly the claim of Theorem 6.2.
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Remark 6.4. Our primary interest in Theorem 6.2 is when p ∈ [1,∞) (or more generally, say,
p ∈ [2−1,∞)), in which case the factor 21/p is of no concern to us. In fact, a better estimate for
p ∈ (0, 2−1) may be obtained by the following modification of the last computation. Take instead
δ = p2−p and γd,δ as in (6.11). Then

‖T\f‖Lp(w) ≤ 2 · (1− p)−1/p · [w]A∞
cd
c

log(2C1/cdp−12p)‖Mf‖Lp(w)

≤ Cd ·
(
1 + log p−1

)
[w]A∞‖Mf‖Lp(w),

using in particular that (1− p)−1/p ≤ (1− 2−1)−1/2−1
= 22 = 4 for p ∈ (0, 2−1].

6.7. Some facts from the classical theory of singular integrals. In the (lengthy) proof of
Theorem 6.2 above, we required at one point (Remark 6.2) the following sharp growth bound from
the classical theory of singular integrals:

‖T\‖Lp→Lp ≤ Cp, p→∞. (6.13)

Let us briefly indicate why this is the case. Recall that the operators under consideration here are
bounded T : L2 → L2 with the kernel representation

Tf(x) =
ˆ

Rd
K(x, y)f(y) dy, x /∈ supp f,

where K satisfied the standard estimates.

Proposition 6.1. We have T : L1 → L1,∞ boundedly.

This is proven in a similar way as the corresponding result for the dyadic shifts, using the
Calderón–Zygmund decomposition f = g + b, the L2 boundedness for Tg and the kernel bounds
for Tb.

Proposition 6.2. We have T : Lp → Lp boundedly for p ∈ (1, 2), and in particular ‖T‖Lp→Lp ≤
C/(p− 1) ≤ Cp′ for p ∈ (1, 3/2).

The qualitative statement is a consequence of the boundedness of T : L2 → L2 and T : L1 →
L1,∞ by the usual Marcinkiewicz interpolation theorem. The quantitative statement follows in
the same way, by keeping careful track of the constants in the usual proof of the Marcinkiewicz
theorem.

Proposition 6.3. We have T : Lp → Lp boundedly for p ∈ (2,∞), and in particular ‖T‖Lp→Lp ≤
Cp for p ∈ (3,∞).

Note that the adjoint operator T ∗ satisfies exactly the same assumptions, and thus conclusions,
as T . By the previous proposition, we have T ∗ : Lq → Lq for q ∈ (1, 2) and ‖T ∗‖Lq→Lq ≤ Cq′ for
q ∈ (1, 3/2). But it is a general fact that an operator has the same norm as its adjoint in the dual
space, thus

‖T‖Lp→Lp = ‖T ∗‖(Lp)∗→(Lp)∗ = ‖T ∗‖Lp′→Lp′ ≤ Cp
′′ = Cp

for p ∈ (3,∞), whence p′ ∈ (1, 3/2).
The proof of (6.13) is the concluded by the following:

Proposition 6.4 (Cotlar’s inequality).

T\f(x) .M(Tf)(x) +Mf(x).

Indeed, recalling that the norm of the maximal operator in Lp is at most Cdp′ ≤ Cd for p ≥ 2,
Cotlar’s inequality and the previous proposition implies that

‖T\f‖p . ‖M(Tf)‖p + ‖Mf‖p . ‖Tf‖p + ‖f‖p . (p+ 1)‖f‖p . p‖f‖p

for p ∈ [3,∞). We conclude this section with:
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Proof of Cotlar’s inequality. By definition of T\, it suffices to prove the pointwise estimate for Tε,
with an arbitrary ε > 0. Consider a point x0. Then

Tεf(x0) =
ˆ
|y−x0|>ε

K(x0, y)f(y) dy =:
ˆ

Rd
K(x0, y)f2(y) dy, f2(y) := 1B(x0,ε)(y)f(y),

=
ˆ

Rd
[K(x0, y)−K(x, y)]f2(y) dy +

ˆ
Rd
K(x, y)f2(y) dy, x ∈ B(x0,

1
2ε) =: Bε.

In the first term, we can estimate

|K(x0, y)−K(x, y)| ≤ C |x0 − x|θ

|x0 − y|d+θ
≤ C εθ

|x0 − y|d+θ
,

and splitting the integration region |y−x0| > ε into the annuli 2jε > |y−x0| ≤ 2j+1ε, j = 0, 1, 2, . . .,
it is easy to dominate ˆ

Rd
|[K(x0, y)−K(x, y)]f2(y)|dy .Mf(x0).

We turn to the second termˆ
Rd
K(x, y)f2(y) dy = Tf2(x) = Tf(x)− Tf1(x), f1 := f − f2 = 1B(x0,ε)f = 12Bεf.

So altogether we have shown that

|Tεf(x0)| .Mf(x0) + |Tf(x)|+ |Tf1(x)|, x ∈ Bε, f1 = 12Bεf.

We take this to the power δ ∈ (0, 1), and take the average over Bε. Observing that the first two
terms are constants, this gives

|Tεf(x0)| .Mf(x0) +
( 

Bε

|Tf |δ
)1/δ

+
(  

Bε

|Tf1|δ
)1/δ

. (6.14)

By Hölder’s inequality, we may replace the δ in the first average by 1, and then dominate this
average by M(Tf)(x0).

It remains to deal with the last term. Its estimation is based on the L1 → L1,∞ boundedness
of T and the fact that δ ∈ (0, 1):ˆ

Bε

|Tf1|δ =
ˆ ∞

0

δλδ−1|Bε ∩ {|Tf1| > λ}|dλ

≤
ˆ A

0

δλδ−1|Bε|dλ+
ˆ ∞
A

δλδ−1|{|Tf1| > λ}|dλ

≤ Aδ|Bε|+
ˆ ∞
A

δλδ−2C‖f1‖1 dλ

= Aδ|Bε|+
δ

1− δ
Aδ−1C‖f1‖1 =

|Bε|
1− δ

(C‖f1‖1
|Bε|

)δ
, A :=

C‖f1‖1
|Bε|

.

Thus ( 
Bε

|Tf1|δ
)1/δ

≤ (1− δ)−1/δC‖f1‖1
|Bε|

≤ CδMf(x0),

where the last step follows readily by recalling that ‖f1‖1 =
´

2Bε
|f |.

Thus the three terms in (6.14) are estimated as

|Tεf(x0)| .Mf(x0) +M(Tf)(x0) +Mf(x0) .M(Tf)(x0) +Mf(x0),

and the proof is completed by taking supremum over ε > 0. �

Remark 6.5. In fact, our proof showed that T\f(x) . Mδ(Tf)(x) + Mf(x), where Mδg :=(
M(|g|δ)

)1/δ and δ ∈ (0, 1). This is not needed for our present applications, but can be used to
check that T\ : L1 → L1,∞ from the fact that T,M : L1 → L1,∞ and Mδ : L1,∞ → L1,∞. It is not
true that M : L1,∞ → L1,∞.
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7. Estimates for singular integrals involving A1 weights

In this final section, we explore some results available in the most restricted Muckenhoupt class
of A1 weights. The goal is to prove the following:

Theorem 7.1 (Lerner–Ombrosi–Pérez 2009 [18]). Let T be a Calderón–Zygmund operator and
w ∈ A1. Then

‖Tf‖Lp(w) ≤ Cpp′[w]A1‖f‖Lp(w), p ∈ (1,∞), (7.1)
and

‖Tf‖L1,∞(w) ≤ C[w]A1(1 + log[w]A1)‖f‖L1(w), (7.2)
where the constant C depends only on the dimension d, and parameters of the operator T .

In fact, we will obtain a slightly sharper version with part of the A1 control replaced by A∞,
as we did with the maximal function.

Some observations are in order. First, the A1 condition is qualitatively stronger than necessary
for (7.1); just Ap would suffice, as we have shown in the special case of one-dimensional convolution
operators earlier. However, quantitatively, as p→ 1, the dependence on the Ap constant is of the
form [w]1/(p−1)

Ap
, while we have a linear dependence on the A1 constant for all p ∈ (1,∞).

Concerning (7.2), such a logarithmic estimate seems to be the best available positive result on
the end-point p = 1. The A1 conjecture, claiming that

‖Tf‖L1,∞(w) ≤ C[w]A1‖f‖L1(w),

has been recently disproven (Nazarov–Reznikov–Vasyunin–Volberg 2010 [20]).

7.1. Technical lemmas. The proof of Theorem 7.1 depends on a number of technical estimates.
We first record the following two classical facts:

Lemma 7.1. Let w1, w2 ∈ A1 and w := w1w
1−p
2 . Then w ∈ Ap and [w]Ap ≤ [w1]A1 [w2]p−1

A1
.

Lemma 7.2 (Coifman–Rochberg 1980 [4]). Let f be a function with Mf <∞ almost everywhere,
and δ ∈ (0, 1). Then (Mf)δ ∈ A1, and

[(Mf)δ]A1 ≤
Cd

1− δ
.

Proofs of Lemmas 7.1 and 7.2. Left as exercises. �

The next lemma is more recent. Only a year earlier (2008), it was proven by the same authors
[17] with the constant Cp(1 + log p) in place of Cp.

Lemma 7.3 (Lerner–Ombrosi–Pérez 2009 [18]). Let T be a Calderón–Zygmund operator, w be
any weight, and p, r ∈ (1,∞). Then for any bounded compactly supported f , we have∥∥∥ Tf

Mrw

∥∥∥
Lp(Mrw)

≤ Cp
∥∥∥ Mf

Mrw

∥∥∥
Lp(Mrw)

.

Proof. By duality with respect to the weighted measure Mrw, we have∥∥∥ Tf

Mrw

∥∥∥
Lp(Mrw)

= sup
{ˆ |Tf |

Mrw
hMrw =

ˆ
|Tf |h : ‖h‖Lp′ (Mrw) ≤ 1

}
.

Hence we estimatê

|Tf |h =
ˆ
|Tf |(Mrw)−1/p′(Mrw)1/p′h

≤
ˆ
|Tf |

(
(Mrw)1/(2p′)

)−2
R
(
(Mrw)1/p′h

)
=:

ˆ
|Tf |W,

where R is Rubio de Francia’s operator used in proving the extrapolation theorems,

Rφ :=
∞∑
k=0

2−kMkφ

‖M‖k
Lp′→Lp′

.
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It satisfies

φ ≤ Rφ, ‖Rφ‖Lp′ ≤ 2‖φ‖Lp′ , M(Rφ) ≤ 2‖M‖Lp′→Lp′Rφ ≤ Cp ·Rφ,

where the last condition says that [Rφ]A1 ≤ Cp.
By Lemma 7.2, we also have that

[(Mrw)1/(2p′)]A1 = [(Mwr)1/(2rp′)]A1 ≤
Cd

1− 1/(2rp′)
≤ 2Cd,

and hence by Lemma 7.1 that

[W ]A∞ ≤ [W ]A3 ≤ [R
(
(Mrw)1/p′h

)
]A1 [(Mrw)1/(2p′)]2A1

≤ Cp.

Now we have by Theorem 6.2 thatˆ
|Tf |W ≤ C[W ]A∞

ˆ
Mf W ≤ Cp

ˆ
Mf W,

provided that
´
|Tf |W <∞. Let us first finish the estimate under this a priori assumption.

We have ˆ
Mf W =

ˆ
Mf(Mrw)−1/p′ ·R

(
(Mrw)1/p′h

)
≤
(ˆ

(Mf)p(Mrw)−p/p
′
)1/p

×
(ˆ [

R
(
(Mrw)1/p′h

)]p′)1/p′

≤
∥∥∥ Mf

Mrw

∥∥∥
Lp(Mrw)

× 2
( ˆ

hp
′
Mrw

)1/p′

≤ 2
∥∥∥ Mf

Mrw

∥∥∥
Lp(Mrw)

,

where we used that −p/p′ = 1− p and the boundedness of R on Lp
′
.

It remains to verify the finiteness of
´
|Tf |W , which is almost the same computation as above:

ˆ
|Tf |W ≤

(ˆ
|Tf |p(Mrw)−p/p

′
)1/p

×
(ˆ [

R
(
(Mrw)1/p′h

)]p′)1/p′

,

where the boundedness of the second factor was already checked above. If f is bounded with
compact support, then f ∈ Lq for all q, and hence Tf ∈ Lq for all q ∈ (1,∞). By Lemmas 7.1
and 7.2, we have

(Mrw)−p/p
′

= 1 ·
(
(Mwr)1/r

)1−p ∈ A1 · (A1)1−p ⊂ Ap ⊂ A∞ ⊂ Lsloc

for some s > 1, where the last step follows from the reverse Hölder inequality.
If K is a compact set which contains the support of f , then

ˆ
K

|Tf |p(Mrw)1−p ≤
( ˆ
|Tf |ps

′
)1/s′( ˆ

K

(Mrw)(1−p)s
)1/s

<∞.

On the other hand, for x outside the support of f (say, at a distance at least 1 from it), we have

|Tf(x)| ≤
ˆ
|K(x, y)||f(y)|dy ≤

ˆ
C

|x− y|d
|f(y)|dy ≤ C

dist(x, supp f)d
‖f‖1,

and max{1,dist(x, supp f)}−d ≤ Cf (1 + |x|)−d ∈ Lp((Mrw)−p/p
′
) for (Mrw)−p/p

′ ∈ Ap, as we
have observed earlier. This completes the proof. �

Our final technical result is the following. It will lead to an almost immediate proof of (7.1).

Lemma 7.4 (Lerner–Ombrosi–Pérez 2009 [18]). Let T be a Calderón–Zygmund operator, w an
arbitrary weight, and p, r ∈ (1,∞). Then for bounded and compactly supported f , we have

‖Tf‖Lp(w) ≤ Cpp′(r′)1/p′‖f‖Lp(Mrw).
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Proof. We first apply the substitution f = gv, where the new weight v is to be chosen. This leads
to the equivalent claims that

‖T (gv)‖Lp(w) ≤ Cpp′(r′)1/p′‖gv‖Lp(Mrw) = Cpp′(r′)1/p′‖g‖Lp(vpMrw),

where we choose v so that vpMrw = v, i.e., v = (Mrw)−1/(p−1) = (Mrw)1−p′ .
Next, we apply duality. Note that the dual of Lp(w) with respect to the unweighted duality

〈g, f〉 =
´
g · f is Lp

′
(σ), where σ := 1{w>0}w

1−p′ . This is the familiar dual weight, except that
we need to take into account the possible zeros of w, now that w is allowed to be arbitrary. Then

‖T (gv)‖Lp(w) = sup
{∣∣∣ˆ h · T (gv)

∣∣∣ =
∣∣∣ˆ T ∗h · gv

∣∣∣ : ‖h‖Lp′ (σ) ≤ 1
}

where, by density, we may restrict the supremum to bounded and compactly supported functions h.
By Hölder’s inequality, ∣∣∣ ˆ T ∗h · gv

∣∣∣ ≤ ‖T ∗h‖Lp′ (v)‖g‖Lp(v),

so that we are reduced to proving that

‖T ∗h‖Lp′ (v) ≤ Cpp
′(r′)1/p′‖h‖Lp′ (σ).

Here, it is important that the adjoint T ∗ is also a Calderón–Zygmund operator, so that we can
apply Lemma 7.3. We may assume that h is supported in {w > 0}, so that we can freely write
negative powers of w when they are multiplied by h.

Indeed, recalling that v = (Mrw)1−p′ , we have

‖T ∗h‖Lp′ (v) =
∥∥∥ T ∗h
Mrw

∥∥∥
Lp′ (Mrw)

≤ Cp
∥∥∥ Mh

Mrw

∥∥∥
Lp′ (Mrw)

= Cp‖Mh‖Lp′ ((Mrw)1−p′ )

and Mh = supQ〈|h|〉Q can be pointwise estimated by

〈|h|〉Q = 〈|h|w−1/pw1/p〉Q ≤ 〈wr〉1/(pr)Q 〈(|h|w−1/p)(pr)′〉1/(pr)
′

Q ,

where we used Hölder’s inequality with exponents pr and (pr)′. Taking supremum over Q gives

Mh ≤ (Mrw)1/p
[
M
(
(|h|w−1/p)(pr)′

)]1/(pr)′
,

and hence

‖Mh‖Lp′ ((Mrw)1−p′ ) ≤
(ˆ

(Mrw)p
′/p
[
M
(
(|h|w−1/p)(pr)′

)]p′/(pr)′(Mrw)1−p′
)1/p′

≤
∥∥∥M((|h|w−1/p)(pr)′

)∥∥∥1/(pr)′

Lp′/(pr)′
(using p′/p+ 1− p′ = 0)

≤
(
C
(
p′/(pr)′

)′∥∥∥(|h|w−1/p)(pr)′
∥∥∥
Lp′/(pr)′

)1/(pr)′

=
(
C
(
p′/(pr)′

)′)1/(pr)′

‖h‖Lp′ (w1−p′ )

The second factor is ‖h‖Lp′ (σ), as we wanted, so it only remains to estimate the factor in front.
We have (

p′/(pr)′
)′ =

p′/(pr)′

p′/(pr)′ − 1
=

p′

p′ − (pr)′
=

p/(p− 1)
p/(p− 1)− pr/(pr − 1)

=
pr − 1

(pr − 1)− r(p− 1)
=
pr − 1
r − 1

≤ pr

r − 1
= pr′

and thus(
C
(
p′/(pr)′

)′)1/(pr)′

≤
(
Cpr′

)1−1/(pr) ≤ C · p · (r′)1−1/p+(1−1/r)/p = Cp(r′)1/p′+1/(r′p),

where (r′)1/r′ ≤ e1/e, and this completes the estimate. �



WEIGHTED NORM INEQUALITIES 49

7.2. Proof of Theorem 7.1. In fact, we prove the following slightly sharper version, again
implementing the philosophy that part of the Ap control may be replaced by the weaker A∞
control in the quantitative bounds:

Theorem 7.2 (Hytönen–Pérez 2011 [12]). Let T be a Calderón–Zygmund operator and w ∈ A1.
Then

‖Tf‖Lp(w) ≤ Cpp′[w]1/pA1
[w]1/p

′

A∞
‖f‖Lp(w), p ∈ (1,∞), (7.3)

and
‖Tf‖L1,∞(w) ≤ C[w]A1(1 + log[w]A∞)‖f‖L1(w), (7.4)

where the constant C depends only on the dimension d, and parameters of the operator T .

Proof of (7.3). This follows almost instantly from Lemma 7.4, which says that

‖Tf‖Lp(w) ≤ Cpp′(r′)1/p′‖f‖Lp(Mrw)

for p, r ∈ (1,∞). We choose r = r(w) = 1 + 2−d−3/[w]A∞ as in the reverse Hölder inequality.
Then r′ = 1 + 2d+3[w]A∞ ≤ C[w]A∞ and

Mrw ≤ 2Mw ≤ 2[w]A1w;

hence
(r′)1/p′‖f‖Lp(Mrw) ≤ C[w]1/p

′

A∞
‖f‖Lp(2[w]A1w) ≤ C[w]1/p

′

A∞
[w]1/pA1

‖f‖Lp(w). �

Proof of (7.4). As is typical for weak-type (1, 1) proofs, this is based on the Calderón–Zygmund
decomposition: For λ > 0, let Qj be the maximal dyadic cubes with

ffl
Qj
|f | > λ, let Ω :=

⋃
j Qj ,

and write

f =
(
f · 1Ωc +

∑
j

〈f〉Qj · 1Qj
)

+
∑
j

(f − 〈f〉Qj ) · 1Qj =: g +
∑
j

bj =: g + b.

We also let Ω̃ :=
⋃
j 2Qj . Then

w(|Tf | > λ) ≤ w(Ω̃) + w(Ω̃c ∩ {|Tb| > 1
2λ}) + w(Ω̃c ∩ {|Tg| > 1

2λ}).

The part Ω̃. From the definition of Qj , we have |Qj | < λ−1
´
Qj
|f |; thus

w(2Qj) =
w(2Qj)
|Qj |

2d|Qj | ≤ [w]A1 inf
Qj
w · 2d · 1

λ

ˆ
Qj

|f | ≤ 2d[w]A1

λ

ˆ
Qj

|f |w,

and hence

w(Ω̃) ≤
∑
j

w(2Qj) ≤
2d[w]A1

λ

∑
j

ˆ
Qj

|f |w ≤ 2d[w]A1

λ
‖f‖L1(w),

since the cubes Qj are disjoint.

The “bad” part b. This is in fact the easier part in the present case. We have

w(Ω̃c ∩ {|Tb| > 1
2λ}) ≤

2
λ

ˆ
Ωc
|Tb|w ≤ 2

λ

ˆ
Ωc

∑
j

|Tbj |w ≤
2
λ

∑
j

ˆ
(2Qj)c

|Tbj |w.

We first estimate pointwise, for x ∈ (2Qj)c:

|Tbj(x)| =
∣∣∣ˆ
Qj

K(x, y)bj(y) dy
∣∣∣ =

∣∣∣ˆ
Qj

[K(x, y)−K(x, yj)]bj(y) dy
∣∣∣

≤
ˆ
Qj

C|y − yj |θ

|x− yj |d+θ
|bj(y)|dy ≤ C`(Qj)θ

|x− yj |d+θ

ˆ
Qj

|bj(y)|dy ≤ C`(Qj)θ

|x− yj |d+θ
‖1Qjf‖L1 ,

where yj is the centre of Qj , and we used the fact that
´
bj = 0. By estimating the value of

|x− yj |−d−θ in the annuli 2k+1Qj \ 2kQj , we easily find that

1(2Qj)c(x)
`(Qj)θ

|x− yj |d+θ
≤ C

∞∑
k=0

2−kθ
12kQj

|2kQj |
.
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Hence

‖1(2Qj)cTbj‖L1(w) ≤ C‖1Qjfj‖L1

∞∑
k=0

2−kθ
w(2kQj)
|2kQj |

≤ C‖1Qjfj‖L1

∞∑
k=0

2−kθ[w]A1 inf
Qj
w

≤ C[w]A1‖1Qjfj‖L1(w)

∞∑
k=0

2−kθ ≤ C[w]A1‖1Qjfj‖L1(w),

and finally

w(Ω̃c ∩ {|Tb| > 1
2λ}) ≤

2
λ

∑
j

‖1(2Qj)cTbj‖L1(w)

≤ C[w]A1

λ

∑
j

‖1Qjf‖L1(w) ≤
C[w]A1

λ
‖f‖L1(w)

by the disjointness of the Qj .

The “good” part g. This is the harder part in the present case, which relies on the technical
Lemma 7.4. With some p, r ∈ (1,∞) to be chosen, we have

w(Ω̃c ∩ {|Tg| > 1
2λ}) ≤

( 2
λ

)p ˆ
Ω̃c
|Tg|pw =

( 2
λ
‖Tg‖Lp(1Ω̃cw)

)p
≤
( 2
λ
Cpp′(r′)1/p′‖g‖

Lp
(
Mr(1Ω̃cw)

))p
≤
(
Cpp′)p(r′)p−1 1

λp

ˆ
|g|pMr(1Ω̃cw)

≤
(
Cpp′)p(r′)p−1 1

λ

ˆ
|g|Mr(1Ω̃cw) (since |g| ≤ 2dλ).

By definition of g, we haveˆ
|g|Mr(1Ω̃cw) =

ˆ
Ωc
|f |Mr(1Ω̃cw) +

∑
j

|〈f〉Qj |
ˆ
Qj

Mr(1Ω̃cw)

The first term we simply estimate byˆ
Ωc
|f |Mr(1Ω̃cw) ≤

ˆ
Rd
|f |Mrw.

For the second term, let us investigate Mw(1Ω̃cw)(x) for x ∈ Qj . By definition

Mr(1Ω̃cw)(x) = sup
Q3x

( 1
|Q|

ˆ
Q

1Ω̃cw
r
)1/r

.

If Q 3 x is a cube for which the above integral is nonzero, then Q much intersect both x ∈ Qj 3 x
and Ω̃c ⊂ (2Qj)c. Hence `(Q) ≥ 1

2`(Qj). But then 3Q ⊃ Qj , and we have( 1
|Q|

ˆ
Q

1Ω̃cw
r
)1/r

≤
( 3d

|3Q|

ˆ
3Q

1Ω̃cw
r
)1/r

≤ C inf
Qj
Mrw.

Thus∑
j

|〈f〉Qj |
ˆ
Qj

Mr(1Ω̃cw) ≤ C
∑
j

|〈f〉Qj | · |Qj | inf
Qj
Mrw

≤ C
∑
j

‖1Qjf‖L1 · inf
Qj
Mrw ≤ C

∑
j

‖1Qjf‖L1(Mrw) ≤ ‖f‖L1(Mrw).
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Altogether, we have now shown that

w(Ω̃c ∩ {|Tg| > 1
2λ}) ≤ (Cpp′)p(r′)p−1 1

λ
‖g‖

L1
(
Mr(1Ω̃cw)

) ≤ (Cpp′)p(r′)p−1 1
λ
‖f‖L1(Mrw),

and it remains to choose suitable p and r. First, let again r := r(w) = 1 + 2−d−3/[w]A∞ , so that

‖f‖L1(Mrw) ≤ 2‖f‖L1(Mw) ≤ 2[w]A1‖f‖L1(Mw),

as before. Second, let p := 1 + 1/ log(1 + [w]A∞) ≤ c, so that p′ = 1 + log(1 + [w]A∞) and

(Cpp′)p(r′)p−1 ≤ C
(
1 + log(1 + [w]A∞)

)1+1/ log(1+[w]A∞ )(1 + 2d+3[w]A∞)1/ log(1+[w]A∞ )

≤ C(1 + log[w]A∞),

by using the fact that t1/t ≤ e1/e. These estimates combined, we have

w(Ω̃c ∩ {|Tg| > 1
2λ}) ≤ (Cpp′)p(r′)p−1 1

λ
· ‖f‖L1(Mrw) ≤

C

λ
(1 + log[w]A∞) · [w]A1‖f‖L1(w),

and this completes the proof. Note that the “good” part was the only one which produced the
additional factor 1 + log[w]A∞ . �

8. Conclusion

These lectures have given an overview, by no means exhaustive, of a number of aspects in the
recently active area of quantitative weighted norm inequalities. As mentioned in the beginning, we
have concentrated on the one-weight theory, barely touching the two-weight theory, where many
basic questions still remain open.

In terms of one-weight theory, the aim has been to survey a number of different types of
questions, and not necessarily the most general results available. Thus, for the quantitative Ap
bounds for singular integrals, we proved the dyadic representation theorem of Vagharshakyan,
and the resulting sharp Ap bounds for one-dimensional convolution operators. The most general
results in this direction are the following ones essentially due to myself (2010) [10]; the following
formulation of Theorem 8.1 being from Hytönen–Pérez–Treil–Volberg (2010) [13]:

Theorem 8.1 (General dyadic representation theorem [10, 13]). Let T be any Calderón–Zygmund
operator. Then there exist dyadic shift of Xω

m,n of parameters (m,n) for all m,n ∈ N such that

〈g, Tf〉 = c

∞∑
m,n=0

2−(m+n)θ/2

ˆ
Ω

〈g,Xω
m,nf〉dP(ω)

for all bounded, compactly supported functions f and g. Here all dyadic shifts with (m,n) ∈
N2 \ {(0, 0)} are of the cancellative type, but the shifts with parameters (0, 0) can be of the non-
cancellative type; cf. Remark 4.1.

Theorem 8.2 (The A2 theorem [10]). Let T be any Calderón–Zygmund operator. Then it satisfies

‖Tf‖L2(w) ≤ C[w]A2‖f‖L2(w) ∀w ∈ A2.

By extrapolation, we also have

‖Tf‖Lp(w) ≤ C[w]max{1,1/(p−1)}
Ap

‖f‖Lp(w) ∀p ∈ (1,∞), ∀w ∈ Ap.

Before being proven in July 2010, this was known as the A2 conjecture. Theorem 8.2 is estab-
lished with the help of Theorem 8.1, and this is the only known way at the time of writing. Notice
that Theorem 8.2 is not a direct corollary of Theorem 8.1 by the results we have proven in these
lectures, because these estimates,

‖Xω
m,nf‖L2(w) ≤ Cd(m,n)[w]A2‖f‖L2(w),

where Cd(m,n) is exponential in (m,n), are too weak to give convergence of the infinite series
above. For the proof of Theorem 8.2, it was necessary to improve this estimate so as to have good
dependence not only on [w]A2 but also on (m,n).

The End
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