Homework exercises, set 9

1. Let $\rho: S U(n) \rightarrow \operatorname{Aut}(V)$ be a representation by real orthogonal matrices. Show that the form $\operatorname{tr}\left(g^{-1} d g\right)^{4 k+1}$ on $S U(n)$ vanishes identically when the trace is computed in the representation space V.
2. Compute $\int \operatorname{tr}\left(g^{-1} d g\right)^{3}$ for the function $g: \mathbb{R}^{3} \rightarrow S U(2)$ given by

$$
g(x)=\exp \left(i f(r) x_{k} \sigma_{k} / r\right)
$$

where $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is any smooth function such that $f(0)=0$ and $f(r)$ converges smoothly to the constant function π when $r \rightarrow \infty$. The σ_{k} 's are the hermitean Pauli matrices with square $=1$.
3. We can view the complex group $S L(2, \mathbb{C})$ as a principal G bundle over S^{2}, where G is the group of upper triangular matrices in $S L(2, \mathbb{C})$ and $\pi: S L(2, \mathbb{C}) \rightarrow$ $S L(2, \mathbb{C}) / G=S^{2}$ is the canonical projection. Construct a holomorphic transition function for this bundle on the extended equator in S^{2} and show that the function can be reduced to a subgroup $\mathbb{C}^{\times} \subset G$ of diagonal matrices.
4. Construct a nontrivial $S U(2)$ bundle over $M=S^{2} \times S^{2}$ and compute the integral of the second Chern class over M with respect to the defining representation of $S U(2)$ in \mathbb{C}^{2}. What is the minimal value of this integral for all nontrivial bundles?
5. As in the case of the unit sphere, show that the equivalence classes of principal $U(1)$ bundles over the torus $S^{1} \times S^{1}$ are parametrized by a single integer n which is equal to $\frac{1}{2 \pi i} \int F$, where F is the curvature form of a connection. Using a triangulation of a 2-dimensional connected manifold Σ, show that the integral of a curvature form over Σ of a $U(1)$ bundle is always $2 \pi i$ times an integer.

