1. Give the details of the construction of the direct sum vector bundle $E \oplus F$ when E, F are vector bundles over the same manifold M; the fiber $(E \oplus F)_{x}$ is $E_{x} \oplus F_{x}$. Show that there is a real rank one vector bundle E over S^{2} such that $T S^{2} \oplus E$ is trivial.
2. Let L be real rank one vector bundle over S^{1}. Show that $L \oplus L$ is trivial.
3. Construct a connection in the Hopf bundle $S^{3} \rightarrow S^{7} \rightarrow S^{4}$.
4. Let $E \rightarrow M$ be a rank n vector bundle and assume that there is a section $\psi \in \Gamma(E)$ such that $\nabla_{X} \psi=0$ for all $X \in D^{1}(M)$ and $\psi(x) \neq 0$ for all $x \in M$. Show that the curvature form F of the vector bundle can be thought of as a $(n-1) \times(n-1)$ matrix valued 2-form. We assume that the structure group is reduced to $U(n)$ or $O(n)$ and $|\psi(x)|=1$.
5. Think of the group $S U(2)$ as a principal \mathbb{Z}_{2} bundle over the rotation group $S O(3)$. Determine a connection and its connection form in this bundle.
6. Let $n>1, f: S^{2 n-1} \rightarrow S^{n}$ a smooth map and Ω_{n} a closed n - form on S^{n} such that $\int_{S^{n}} \Omega_{n}=1$. By cohomological reasons $f^{*} \Omega_{n}$ is exact, $f^{*} \Omega_{n}=d \omega_{n-1}$.
a) Show that

$$
H(f)=\int_{S^{2 n-1}} \omega_{n-1} \wedge d \omega_{n-1}
$$

does not depend on the choice of ω_{n-1}.
b) Show that $H(f)=H(g)$ when f, g are homotopic.
c) Show that $H(f)=0$ when n is odd.
d) Compute $H(f)$ when f is the Hopf projection $S^{3} \rightarrow S^{2}$.

