1. Let $t \mapsto h_{t}$ be the (local) flow generated by a vector field X. Let Y be another vector field and define

$$
\left(\mathcal{L}_{X} Y\right)(x)=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left[\left(h_{-\epsilon}\right)_{*} \cdot Y\left(h_{\epsilon}(x)\right)-Y(x)\right]
$$

Show that $\mathcal{L}_{X}(Y)=[X, Y]$.
2. Show that $f_{*}[X, Y]=\left[f_{*} X, f_{*} Y\right]$.
3. Let X, Y be a pair of vector fields and ω, η differential forms on a manifold. Show that $i_{[X, Y]} \omega=\mathcal{L}_{X}\left(i_{Y} \omega\right)-i_{Y}\left(\mathcal{L}_{X} \omega\right)$ and that $i_{X}(\omega \wedge \eta)=i_{X} \omega \wedge \eta+(-1)^{k} \omega \wedge$ $i_{X} \eta$ when ω is a k-form. Furthermore, observe that $i_{X}^{2}=0$ and $\mathcal{L}_{X} i_{X}=i_{X} \mathcal{L}_{X}$.
4. Let $M=\mathbb{R}^{2} \backslash\{0\}$ and $\omega=\frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$. Show that ω is closed. Define $f(x, y)=\operatorname{arc} \tan (y / x)$. Show that $\omega=d f$. Is ω exact?
5. Prove that the relation

$$
\begin{aligned}
(d \omega)\left(X_{1}, \ldots, X_{k+1}\right) & =\sum_{i=1}^{k+1}(-1)^{i-1} X_{i} \cdot \omega\left(X_{1}, \ldots, \hat{X}_{i}, \ldots, X_{k+1}\right) \\
& +\sum_{i<j}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], X_{1}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots, X_{k+1}\right)
\end{aligned}
$$

is compatible with the definition of d in terms of local coordinates. Here the hat means that the corresponding term is deleted.
6. Show directly, without using general theorems on cohomology of product spaces, that $H^{2}\left(S^{1} \times S^{1}\right)=\mathbb{R}$.

