Homework exercises, set 2

1. Show that the wedge product $f \wedge g$ of $f \in \Omega^{k}(V)$ and $g \in \Omega^{l}(V)$ is really in $\Omega^{k+l}(V)$.
2. With the notation of (1), show that $f \wedge g=(-1)^{k l} g \wedge f$.
3. Prove that the wedge product is associative.
4. Let $X, Y \in \mathcal{D}^{1}(M)$ and $\omega \in \Omega(M)$. Show that $\mathcal{L}_{X}\left(\mathcal{L}_{Y} \omega\right)-\mathcal{L}_{Y}\left(\mathcal{L}_{X} \omega\right)=$ $\mathcal{L}_{[X, Y]} \omega$. Hint: Do first the case $\omega \in \Omega^{1}(M)$ and then generalize to forms of arbitrary degree.
5. Prove the relation $\mathcal{L}_{X}=d \circ i_{X}+i_{X} \circ d$.
6. Use the result of exercise 5 to show that Lie derivative and exterior differentiation commute.
