Homework exercises, set 11

1. Denote by γ_{μ} , $\mu = 0, 1, 2, 3$, the Dirac matrices in the Minkowski metric $\eta = \text{diag}(1, -1, -1, -1)$ where the index $\mu = 0$ corresponds to the time-like (positive norm) direction. Compute the commutation relations of the matrices $M_{\mu\nu} = \frac{1}{4}[\gamma_{\mu}, \gamma_{\nu}]$ and show that the Lie algebra generated by these matrices is isomorphic to the Lie algebra of complex trace-less 2×2 matrices, considered as a *real* vector space.

2. Let A be a local vector potential, that is, the pull-back to the base of the connection form ω on the the total space P of a principal bundle. Assume that A is defined on an open set $U \subset M$ in the given local trivialization. What is the horizontal subspace $H_p \subset T_p P$ expressed in the local trivialization $U \times G$ of the principal bundle?

3. Let $\{U_{\alpha}\}$ be an open cover of a compact oriented manifold M and $\{\rho_{\alpha}\}$ a partition of unity subordinate to this open cover. Assume that we have a collection of integers $n_{\alpha\beta\gamma}$, antisymmetric in the indices, corresponding to the labels of the open cover, such that

$$n_{\alpha\beta\gamma} - n_{\alpha\beta\delta} + n_{\alpha\gamma\delta} - n_{\beta\gamma\delta} = 0$$

for all quadruples of indices. Show that the collection of local 2-forms

$$F_{\alpha} = \sum_{\beta\gamma} n_{\alpha\beta\gamma} d\rho_{\beta} \wedge d\rho_{\gamma}$$

actually defines a globally well-defined closed 2-form on M. What has this to do with the first Chern class of a complex line bundle, or its transition functions?

4. Write down explicitly the Dirac operator on the unit sphere S^2 , coupled to the vector potential of the monopole bundle.

5. a) Compute the index of the Dirac operator on S^4 (standard metric) associated to a principal SU(2) bundle through the defining representation of SU(2) in \mathbb{C}^2 . We assume that the connection corresponds to the basic instanton (self-dual) gauge field, the value of the integral of (the normalized) second Chern class is equal to one. Use the fact that the first Pontrjagin number of S^4 vanishes (it is actually not very difficult to prove this). b) Construct a Dirac operator in a vector bundle over the torus $S^1 \times S^1$ with a given index = k.