1. Denote by $\gamma_{\mu}, \mu=0,1,2,3$, the Dirac matrices in the Minkowski metric $\eta=\operatorname{diag}(1,-1,-1,-1)$ where the index $\mu=0$ corresponds to the time-like (positive norm) direction. Compute the commutation relations of the matrices $M_{\mu \nu}=\frac{1}{4}\left[\gamma_{\mu}, \gamma_{\nu}\right]$ and show that the Lie algebra generated by these matrices is isomorphic to the Lie algebra of complex trace-less 2×2 matrices, considered as a real vector space.
2. Let A be a local vector potential, that is, the pull-back to the base of the connection form ω on the the total space P of a principal bundle. Assume that A is defined on an open set $U \subset M$ in the given local trivialization. What is the horizontal subspace $H_{p} \subset T_{p} P$ expressed in the local trivialization $U \times G$ of the principal bundle?
3. Let $\left\{U_{\alpha}\right\}$ be an open cover of a compact oriented manifold M and $\left\{\rho_{\alpha}\right\}$ a partition of unity subordinate to this open cover. Assume that we have a collection of integers $n_{\alpha \beta \gamma}$, antisymmetric in the indices, corresponding to the labels of the open cover, such that

$$
n_{\alpha \beta \gamma}-n_{\alpha \beta \delta}+n_{\alpha \gamma \delta}-n_{\beta \gamma \delta}=0
$$

for all quadruples of indices. Show that the collection of local 2-forms

$$
F_{\alpha}=\sum_{\beta \gamma} n_{\alpha \beta \gamma} d \rho_{\beta} \wedge d \rho_{\gamma}
$$

actually defines a globally well-defined closed 2-form on M. What has this to do with the first Chern class of a complex line bundle, or its transition functions?
4. Write down explicitly the Dirac operator on the unit sphere S^{2}, coupled to the vector potential of the monopole bundle.
5. a) Compute the index of the Dirac operator on S^{4} (standard metric) associated to a principal $S U(2)$ bundle through the defining representation of $S U(2)$ in \mathbb{C}^{2}. We assume that the connection corresponds to the basic instanton (self-dual) gauge field, the value of the integral of (the normalized) second Chern class is equal to one. Use the fact that the first Pontrjagin number of S^{4} vanishes (it is actually not very difficult to prove this). b) Construct a Dirac operator in a vector bundle over the torus $S^{1} \times S^{1}$ with a given index $=k$.

