1. Prove the commutation relations

$$
\left[M_{i j}, M_{k l}\right]=\delta_{j k} M_{i l}+\delta_{i l} M_{j k}-\delta_{i k} M_{j l}-\delta_{j l} M_{i k}
$$

for the matrices $M_{i j}=\frac{1}{4}\left[\gamma_{i}, \gamma_{j}\right]$. (Euclidean metric)
2. Show that the unit sphere in any dimension is a spin manifold. Hint: Think of $\operatorname{Spin}(n)$ as a \mathbb{Z}_{2} principal bundle over $S O(n)$. The transition function of the frame bundle of S^{n} defines by pull-back a Z_{2} bundle over the equator.
3. Compute the 8 -form part of the Chern character $\operatorname{tr} \exp (F / 2 \pi)$ of a real vector bundle in terms of the Pontrjagin classes.
4. We identify the Euclidean space \mathbb{R}^{4} as the quaternion algebra, i.e., the algebra of complex 2×2 matrices $q=x_{4} \cdot \mathbf{1}+\mathbf{x}$, where x_{4} is a real number and \mathbf{x} is a traceless antihermitean matrix. The traceless part \mathbf{x} can also be interpreted as an element in the Lie algebra of the group $S U(2)$. We denote $\operatorname{Im}(q)=\mathbf{x}$ and $|q|$ is the Euclidean norm of q.

Define a Lie algebra valued 1-form as $A=\frac{1}{|q|^{2}+1} \operatorname{Im}\left(q d q^{*}\right)$, where q^{*} is the hermitean conjugate of the matrix q. We interprete this as a connection form on a $S U(2)$ bundle over \mathbb{R}^{4}. Show that the curvature form is

$$
F=\frac{1}{\left(|q|^{2}+1\right)^{2}} d q \wedge d q^{*}
$$

Show that F is self-dual and that its instanton number is equal to 1 . Remark: Although all bundles over \mathbb{R}^{4} are trivial, it is not difficult to show that the form A actually comes from a connection of a principal $S U(2)$ bundle over S^{4}, as pull-back through stereographic projection. This is the Belavin-Polyakov-Schwarz-Tyupkin instanton (BPST).
5. The construction in Problem 4 can be generalized to arbitrary instanton number k. Read the article ADHM: Atiyah, Drinfeld, Hitchin, Manin: Construction of instantons, Phys. Lett. A , vol. 65 (1978), p. 185-187. Explain the case $k=2$ and $G=S U(2)$.

