CHAPTER 4: PRINCIPAL BUNDLES

4.1 Lie groups

A Lie group is a group G which is also a smooth manifold such that the mul-
tiplication map G x G — G, (a,b) — ab, and the inverse G — G,a — a1, are
smooth.

Actually, one can prove (but this is not easy) that it is sufficient to assume
continuety, smoothness comes free. (This was one of the famous problems listed
by David Hilbert in his address to the international congress of mathematicians
in 1900. The result was proven by A. Gleason, D. Montgomery and L. Zippin in
1952.)

Examples The vector space R" is a Lie group. The group multiplication is just

the addition of vectors. The set GL(n,R) of invertible real n x n matrices is a Lie

group with respect to the usual matrix multiplication.
Theorem. Any closed subgroup of a Lie group is a Lie group.

The proof is complicated. See for example S. Helgason: Differential Geometry,
Lie Groups and Symmetric Spaces, section II.2.

The theorem gives an additional set of examples of Lie groups: The group of real
orthogonal matrices, the group of complex unitary matrices, the group of invertible
upper triangular matrices ....

For a fixed a € GG in a Lie group we can define a pair of smooth maps, the left
translationl, : G — G,l,(g) = ag, and the right translation r, : G — G, r,(g) = ga.
We say that a vector field X € D1(QG) is left (resp. right) invariant if (1), X = X
(resp. (rq)X = X) for all a € G.

Since the left (right) translation is bijective, a left (right) invariant vector field is
uniquely determined by giving its value at a single point, at the identity, say. Thus
as a vector space, the space of left invariant vector fields can be identified as the

tangent space T.G at the neutral element e € G.

Theorem. Let X,Y be a pair of left (right) invariant vector fields. Then [X,Y] is

left (right) invariant.
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Proof. Denote f =1, : G — G. Recall that

_ W

"o i

where we have written the map f in terms of local coordinates as y = y(z). Then

(X" Y = X799y — Y79 X" = X)0;Y" =Y 9; X"
Y’ Y’

] k j k
= X0, YH) = Y90, (5 xP)
O’ . , 02" : .
- agk (X79,Y" - YI9;X*) + ijgxk (XIYk — yixh).

The second term on the right vanishes since the second derivative is symmetric.
Thus we have [X',Y'] = [X, Y], i.e., [(la)«X, (10)Y] = (I4)«[X, Y]. Thus the com-

mutator is left invariant.

It follows that the left invariant vector field form a Lie algebra. This Lie algebra
is denoted by Lie(G) and it is called the Lie algebra of the Lie group G. Observe
that dimLie(G) = dim7,G = dimG.

Example 1 Let G = R™. The property that a vector field X = X;" is left (right)
invariant means simply that the coefficient functions X;(x) are constants. Thus left
invariant vector fields can be immediately identified as vectors (Xi,...,X,,) in R™.
Constant vector fields commute, thus Lie(R™) is a commutative Lie algebra.

Example 2 Let G = GL(n,R). Let X be a left invariant vector field and
z=X(1) = £e*|;—o. Then

d

X(g) = Eget'zh:o = g=.
This implies that
d d 0 0
X - - tz = (= tz iili—o—— oo = 0 ) ‘
(X - F)lg) = 2 flge™)le=0 = ( ge )j|t—08xijf(x)| —g = YikZkj 8%]”

When Y is another left invariant vector field with w = Y'(1), then

0 0
(X, Y] = [gik2kj 5 GimWmp=—]
! 897;3' paglp
0 0
= JikZkjWip o = JimWmpZpj 75—
J Jpagip 208 %) 8glp
0
= gik‘[sz]

P agzp '
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That is, the commutator of the vector fields X,Y is simply given by the com-

mutator [z, w] of the parameter matrices.

Example 3 The group SO(n) C GL(n,R) of rotations in R™. Each antisym-
metric matrix L defines a 1-parameter group of rotations by R(t) = e!. The
tangent vector of this curve at t = 0 is L. We can define a left invariant vector field
as above as X(g) = gL. The commutator of a pair of antisymmetric matrices is
again antisymmetric. The condition that L is antisymmetric is necessary in order
that it is tangential to the orthogonal group at the identity: Take a derivative of
R(t)!R(t) = 1 at t = 0! Thus the Lie algebra of SO(n) consists precisely of all
antisymmetric real n X n matrices. When n = 2 we recover the 1-dimensional
group of rotations in the plane (the Lie algebra is commutative) and when n = 3
we get the 3-dimensional group of rotations in R? and its Lie algebra is the angular

momentum algebra.

The complex unitary group U(n) has as its Lie algebra the algebra of antiher-
mitean matrices. This is shown by differentiating R(¢)*R(t) = 1 at t = 0 for
R(t) = et. The Lie algebra of SU(n) is given by antihermitean traceless matrices.

Here SU(n) C U(n) is the subgroup consisting of matrices of unit determinant.

In the case of a matrix Lie group we have an exponential mapping exp : Lie(G) —
G from the Lie algebra to the corresponding Lie group, which is given through the
usual power series expansion eX = 1+ X + %X 2 ... This is because the left
invariant vector fields are parametrized by the value of the tangent vector at the
identity which is equal to the derivative of a 1-parameter group of matrices at the
identity. The exponential mapping, which has a central role in Lie group theory,
can be generalized to arbitrary Lie groups. If X is a left invariant vector field on
the group then, at least locally, there is a unique curve g(t) with g(0) = 1 and
g'(t) = X(g(t)) by the theory of first order differential equations. In fact, it is easy
to see that this solution is actually globally defined by a use of group multiplication.
Since X is left invariant we have ¢/(t) = £, - X(1), that is, X(1) = £ - ¢'(t).

g(t)

The exponential mapping is then defined as

See S. Helgason, Chapter II, for more details.
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Exercise Prove with the help of the chain rule of differentiation that e!Xes* =

t+s)X

el in every Lie group, for real ¢, s and for any left invariant vector field X.

Let Xq,...,X, be a basis of Lie(G). Then
(X, Xj] = c5 X,

for some numerical constants cfj, the so-called structure constants. Since the Lie

bracket is antisymmetric we have cfj = —c?i and by the Jacobi identity we have
k m kE m k m __
Cijckl + Click,j + leckn' =0

for all 7, 7,1, m. In terms of the left invariant vector fields X;, any tangent vector v
at g € G can be written as v = v*X;(g). Let us define 6° € Q'(G) as 6'(g)v = v".

We compute the exterior derivative df’ :

d0*(9)(X;, Xi) = X;0°(Xy) — Xp0'(X;) — 0°([X;, X))

= Xjézk — Xkéw — Oz(céle) = —C;-k.
On the other hand,
(9z N Qj)(Xk, Xl) = QZ(Xk)QJ (Xl) — Ql(Xl)Qj (Xk) = 5ik:5jl — 5il5jk:-

Thus we obtain Cartan’s structural equations,

do* = —%c;;le’f N
Denote X;0° = g~1dg. This is a Lie(G)-valued 1-form on G. It is tautological at
the identity: (¢~ tdg)(v) = v for v € T1G. For § = g~ldg the structural equations
can be written as

1
o + 5[0 7 0] =0,

where [0 A 0] = [X;, X;]0° A 6.

A left action of a Lie group G on a manifold M is a smooth map G x M — M,
(g,) — gz, such that g1(g2)x = (g192)z for all g;,z and 1-x = = when 1 is the
neutral element. Similarly, one defines the right action as a map M x G — M,
(x,g) — xg, such that z(g192) = (xg1)g2 and x - 1 = x.

The (left) action is transitive if for any x,y € M there is an element g € G such

that y = gz and the action is free if for any x, gr = x only when g = 1. The action
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is faithful if gxr = x for all x € M only when g = 1. The isotropy group at x € M is
the group G, C G of elements g such that gz = =.

Example 1 Let H C G be a closed subgroup of a Lie group G. Then the left
(right) multiplication on G defines a left (right) action of H on G.

Example 2 Let H C G be a closed subgroup in a Lie group. Then the space
M = G/H of left cosets gH is a smooth manifold, see S. Helgason, section 1I.4.
There is a natural left action given by ¢’ - (¢H) = ¢’gH. In general, when G acts
transitivly (from the left) on a manifold M, we can write M = G/H with H = G,
for any fixed element = € M. The bijection ¢ : G/H — M is given by ¢(gH) = gz.

For example, when G = SO(3) and H = SO(2) the quotient M = SO(3)/50(2)
can be identified as the unit sphere S2. Similarly, SU(3)/SU(2) can be identified as
the sphere S°. The sphere S° is equal to the set of points (21, 22, 23) € C3 such that
|21]% + |22|* + |23|% = 1. The point (1,0, 0) is left invariant exactly by the elements
in the subgroup SU(2) C SU(3) operating in the z5z3-plane. On the other hand,
SU(3) acts transitivly on S° and so S° = SU(3)/SU(2).

Let a left action of a Lie group GG on a manifold M be given. Then for each

X € Lie(G) there is a canonical vector field X on M defined by X (z) = 4 et X 2]i—o.
Similarly, a right action gives a canonical vector field by differentiating = - e!*. In
the case when M = (G and the left action is given by the left multiplication on the
group, we have simply X=X.

A Lie group G acts on itself also through the formula g — gogg, L for g9 € G.
This is called the adjoint action and is denoted by Ady,(9) = 9099, 1. Note that the
adjoint action is a left action. Because of Ady, (1) = 1, the derivative of the adjoint

action at g = 1 gives a linear map, denoted by ad,,, from 771G to T1G, that is, we

may view ad, as a linear map
ad, : Lie(G) — Lie(G).

In the case of a matrix Lie group we have simply ad,(X) = gX ¢!, matrix multi-

plication. Thus we have also
ady([X,Y]) = lady(X), ady(Y)]

for all X,Y € Lie(G). This holds also in the case of an arbitrary Lie group. This

means that ad, is an automorphism of the Lie algebra of G.
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Exercise Prove the above statement for an arbitrary Lie group.
We also observe, by the the chain rule for differentiation, that ad,, = ad, o adgy
for all g,g € G. This means that the map g — ad, is a representation of the Lie

group in the vector space Lie(G).

4.2. Definition of a principal bundle and examples

Let G be a Lie group and M a smooth manifold. A principal G bundle over M
is a manifold which locally looks like M x G.

Definition 4.2.1. A smooth manifold P is a principal G bundle over the manifold
M, if a smooth right action of G on P is given, i. e., a map PxG — P, (p,g) — pg,
such that p(g9g9’) = (pg)g'Vp € P and g,q" in G, and if there is given a smooth map
m: P — M such that
(1) w(pg) = w(p) for all g in G.
(2) Vo € M there exists an open neighborhood U of z and a diffeomorphism
(local trivialization) f : 7= Y(U) — U x G of the form f(p) = (7(p), ¢(p))
such that ¢(pg) = ¢(p)gVp € n=1(U), g € G.

The manifold P is the total space of the bundle, M is the the base space, and 7 is
the bundle projection. The trivial bundle P = M x G is defined by the projection
7(x,g) = = and by the natural right action of G on itself.

Consider two bundles P; = (P;, 7;, M;; G) with the same structure group G. A
smooth map ¢ : P, — Py is a G bundle map , if ¢(pg) = ¢(p)g for all p and g. Two
bundles P, and P are isomorphic if there is a bijective bundle map P, — P>. An
isomorphism of a bundle onto itself is an automorphism .

If H C GG is a closed subgroup then GG is a principal H bundle over the homoge-
neous space G/H. The right action of H on G is just the right multiplication in G
and the projection is the canonical projection on the quotient.

Example 4.2.2. Take G = SU(2) and H = U(1)

e’y 0
H<0 6_“0>,SOER

A general element g of GG is
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with |21|? + |22|? = 1. Writing 2; and 2, in terms of their real and imaginary parts
we see that the group G can be identified with the unit sphere S3 in R*. We can

define a map 7 : G — S? by 7(g) = gozg™!

, where o3 is the matrix diag(1,—1);
elements of R? are represented by Hermitian traceless 2 x 2 matrices. The Euclidean
metric is given by ||z||? = —det z. The kernel of the map 7 is precisely U(1); thus
we have a U(1) fibration over S? = SU(2)/U(1) in S3.

Exercise 4.2.3. Let S, = {z € S?|z3 # —1} and S_ = {z € S%|z3 # +1}.
Construct local trivializations fy : 771(S4) — Sy x U(1).

The bundle 82 — S? is nontrivial; it is not isomorphic to S? x S! for topological
reasons. Namely, S? is a simply connected manifold whereas the fundamental group
of 52 x St is equal to 71(St) = Z [M. Greenberg: Lectures on Algebraic Topology].

Let {Ua}aca be an open cover of the base space M of a principal bundle P and
let p— (m(p), da(p)) € U X G be a set of local trivializations. If p € 7~ (U, NUp),

we can write

ba(p) = Eas(P)ds (D),

where £,3(p) € G. Now ¢4 (pg) = ¢ (p)g and ¢5(pg) = ¢s(p)g from which follows
that £,8(pg) = &ap(p) and thus &,s can be thought of as a function on the base

space U,NUg. If p € =1 (U,NUzNU,) and = = 7(p), then ¢, (p) = Eap(T)ds(p) =
€ap(2)€5(2)d(p) so that

faﬂ(x)fﬂv (JJ) = fav(x)’

In general, a collection of G-valued functions {{,3} for the covering {U,} is a one-
cocycle (with values in G) if the above equation holds for all z in U, NUg N U, and
for all triples of indices.

If we make the transformations ¢! = 1,0, for some functions 7, : U, — G,

then
ap > Enp =T Eapnp-

/

If we can find the maps 7, such that £, ; = 1V, §, then {3 = nanﬁ_l and we say
that the one-cocycle £ is a coboundary.

Let (P, 7, M), (P’, 7', M") be a pair of principal G bundles and let f : P — P’
be a bundle map. We define the induced map f : M — M’ by f(z) = 7'(f(p)),

where p is an arbitrary element in the fiber 7= (z).
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Theorem 4.2.4. Let P and P’ be a pair of principal G bundles over M. Let
{Uq, bataca (respectively, {Uy, L Yacn) be a system of local trivializations for P
(respectively, for P'). Let {,p and 551/8 be the corresponding transition functions.
Then there exists an isomorphism f : P — P’ such that f = idyr if and only if the
transition functions differ by a coboundary, that is, &, 4(z) = Ne(z) " eap(x)ns(x)
in Uy NUg for some functions ne : Uy — G.

Proof. 1) Suppose first that £ 5 = no tapng for all a, B € A. Define f : P — P’ as
follows. Let p € P and « = w(p). Choose a € A such that z € U,. Using a local

trivialization (Ua, ¢,) at @ we set f(p) = (2, fa(p)), where fa(p) = na(x) ™ da(p)-
We have to show that the map is well-defined: If x € U, N Ug then ¢g(p) =

£5a(7) 0o (p) and thus

fa(p) = np(x) " ¢ (p) = np(2) " Epal@)da(p)
= &ha(0) [0 (2) T Pa(p)] = Epal@) fa(p).
We conclude that (z, fo(p)) and (z, f3(p)) represent the same element in P’. The

equation f(pg) = f(p)g follows from ¢ (pg) = da(p)g.
2) Let f: P — P’ be an isomorphism. We can define

Na(®) = da(p)dh (f(p) ',

where p € 7~ !(z) is arbitrary. It follows at once from the definition of the transition

functions that the collection {1, }aca satisfies the requirements.

Let {€a5}a,sen be a one-cocycle with values in G, subordinate to an open cover
{U,} on a manifold M. We can construct a principal G bundle P from this data.
Let C = 1I(a, U, X G) be the disjoint union of all the sets U, x G. Define an equiva-
lence relation in C' by (a, z,9) ~ (/,2',¢") if and only if x = 2’ and ¢’ = €40 (2)g.
Set P = C/ ~. The action of G in P is given by (o, x,9)g0 = (,x,ggg). The
smooth structure on P is defined such that the sets U, x G are smooth coordinate
charts for P.

Exercise 4.2.5. Complete the construction of P above.

Let (P, 7, M) be a principal G bundle. A (global) section of P is a map ¢ : M —
P such that mo Y = idy,.

Exercise 4.2.6. Show that a principal bundle is trivial if and only if it has a

global section.
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A local section consists of an open set U C M and a map ¢ : U — P such
that T o = idy. If f: 71 (U) — U x G is a local trivialization we can define a
local section by ¢(x) = f~1(x,h(z)), where h : U — G is an arbitrary (smooth)
function.

Let H C G be a closed subgroup. We say that the bundle P has been reduced
to a principal H subbundle (), if () C P is a submanifold such that gh € @ for all
g€ Q,he€ Hn(Q)=M and H acts transitively in each fiber Q, = 771(z) N Q.

Any manifold M of dimension n carries a natural principal GL(n,R) bundle,
namely, the bundle F'M of linear frames. The fiber F, M at a point x € M consists
of all frames (ordered basis) of the tangent space T, M. The group GL(n,R) acts
in F, M by (f1,f2, - fn)A = Oy A fisd iy Aiafis ooy Doney Ainfi), where the
fi’s are tangent
vectors at « and A = (4;;) € GL(n,R). One can construct a local trivialization
by choosing a local coordinate system (z1,xs,...,x,) in M. In local coordinates
the vectors of a frame f can be written as f; = > fi;0;. This defines a mapping
f — (fij) € GL(n,R). The collection (01, ...,0,) of vector fields defines a local
section of F'M.

If the manifold M has some additional structure the bundle F'M can generally be
reduced to a subbundle. For example, if M is a Riemannian manifold with metric g,
then we can define the subbundle OF M C F'M consisting of orthonormal frames
with respect to the metric g. If in addition M is oriented, then it makes sense to
speak of the bundle SOFM of oriented orthonormal frames: A frame (f1,..., fn)
at a point x is oriented if w(z; f1,..., fn) is positive, where w is a n form defining
the orientation. The structure group of OF M is the orthogonal group O(n) and of
SOF M the special orthogonal group SO(n) consisting of orthogonal matrices with
determinant=1.

Let g be the Lie algebra of the Lie group G. To any A € g there corresponds
canonically a one-parameter subgroup ha(t) = exptA. We define a vector field
A on the G bundle P such that the tangent vector A(p) at p € P is equal to
L1p-ha(t)]t=o. Let g € G be any fixed element. The right translation r4(p) = pg
on P determines canonically a transformation X +— (r;).X on vector fields: The
tangent vector of the transformed field at a point p is simply obtained by applying
the derivative of the mapping 7, to the tangent vector X (pg—!).
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Proposition 4.2.7. For any A € g the vector field A s equivariant, that 1is,
(rg)+A = ady ' AVg € G.

Proof. Using a local trivialization,

A _ i tA
(p) = dt(ﬂ(p),qb(pe ) .
and therefore
o d
((rg)«A)(p) = Typg=r79 - —(m(pg™"), 6(pg~" "))
t=0
= g™, oo e )|
_d ad, ' A
= dt(O,qﬁ(pet ) .
— ad; " Ap).

4.3. Connection and curvature in a principal bundle

Let E and M be a pair of manifolds, V a vector space and 7 : E — M a smooth

surjective map.

Definition 4.3.1. The manifold E is a vector bundle over M with fiber V, if

(1) E, = n~1(x) is isomorphic with the vector space V for each v € M
(2) m : E — M is locally trivial: Any x € M has an open neighborhood U
with a diffeomorphism ¢ : n=1(U) — U x V, ¢(z) = (w(2),£(z)), where the

restriction of € to a fiber E, is a linear isomorphism onto V.

The product M x V is the trivial vector bundle over M, with fiber V. In this
case the projection map M x V — M is simply the projection onto the first factor.

A direct sum of two vector bundles E and F over the same manifold M is the
bundle F & F with fiber E, & F, at a point x € M. The tensor product bundle
FE ® F is the vector bundle with fiber F, ® F, at x € M.

Example 4.3.2. The tangent bundle T'M of a manifold M is a vector bundle
over M with fiber T, M ~ R", where n = dimM . The local trivializations are given

by local coordinates: If (x1,xs,...,x,) are local coordinates on U C M, then the
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value of ¢ for a tangent vector w € T, M, x € M, is obtained by expanding w in
the basis defined by the vector fields (01, ..., 0y).

A section of a vector bundle F is a map ¢ : M — FE such that 7oy = udy,.
The space I'(E) of sections of F is a linear vector space; the addition and multi-
plication by scalars is defined pointwise. A principal bundle may or may not have
global sections but a vector bundle always has nonzero sections. A section can be
multiplied by a smooth function f € C'*°(M) pointwise, (fi)(z) = f(x)(x).

Let (P,m, M) be a principal G bundle. The space V of vertical vectors in the
tangent bundle TP is the subbundle of TP with fiber {v € T,P|r(v) = 0} at
p € P. If P is trivial, P = M x G, then the vertical subspace at p = (z, g) consists
of vectors tangential to G at g. In general, the dimension of the fiber V), is equal

to dim G.

Definition 4.3.3. A connection in the principal bundle P is a smooth distribution

p — Hy, of subspaces of T}, such that

(1) The tangent space T, is a direct sum of V,, and H, Vp € P
(2) The distribution is equivariant, i.e., r¢H, = Hp, Vp € P,g € G.

Smoothness means that the distribution can be locally spanned by smooth vec-
tor fields. We shall denote by pr; (respectively, pr,) the projection in 7}, to the
horizontal subspace H,, (respectively, vertical subspace V).

Let A € g and let A be the corresponding equivariant vector field on P. The
field A is vertical at each point. Since the group G acts freely and transitively on
P, the mapping A — A(p) is a linear isomorphism onto Vp for all p € P. Thus for
each X € T, P there is a uniquely defined element w,(X) € g such that

m = pryX
at p. The mapping w, : T,P — g is linear, thus defining a differential form of

degree one on P, with values in the Lie algebra g. The form w is the connection

form of the connection H.

Proposition 4.3.4. The connection form satisfies

(1) wp(A(p) = AVA € g,
(2) r*w=ad,wVa € G.



56

Furthermore, each g-valued differential form on P which satisfies the above condi-

tions is a connection form of a uniquely defined connection in P.

Proof. The first equation follows immediately from the definition of w. To prove

the second, we first note that

- d ad—"1 d _ A .
(adg 1A)(p) = Epet dq A|t:0 = Epa 1etAa|t:0 = r,A(pa 1).

By the equivariantness property of the distribution H,, the right translations r,
commute with the horizontal and vertical projection operators. Thus [we write (A)™
for A in case of long expressions]
(ot (X)) (p) = 13 -y (X) (po)
=1, (proX)(pa) = pro(ry " X)(pa)
= (wp(ry ' X)) (pa).

Taking account that (riw),(X) = wpa(reX) we get the second relation.

Let then w be any form satisfying both equations. We define the horizontal
subspaces H, = {X € Tp|wp(X) = 0}. If X € H, NV, then X = A(p) for some
A€ g and w,(A(p)) = A = wy(X) = 0, from which follows H, NV, = 0. By (1)
and a simple dimensional argument we get T, = H, +V,,. For X € H, and a € G

we obtain

Wpa(TaX) = (1,0)p(X) = adawp(X) =0,

and therefore r, X € Hp,, which shows that the distribution H, is equivariant and

indeed defines a connection in P.

Let w be a connection form in (P,7, M). Let U C M be open and ¢ : U — P
a local section. The pull-back A = 9*w is a one-form on U. Consider another
local section ¢ : V' — P and set A’ = ¢*w. We can write ¥(x) = ¢(z)g(x) for
g:UNV — G, where g(x) is a smooth G valued function. We want to relate A to
A’. Noting that

by the Leibnitz rule, we get

Ay (u) = Ww(x)(T$¢ ) u) = Wa(x) (rg(ac)Tﬂc¢ U+ (g_lecg ’ u)A(gb(x)))

= ad;(]@wqb(x)(quﬁ cu) 4+ g g - u.
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For a matrix group G we can simply write
A=qg A g+ ¢ 'dg.

The transformation relating A to A’ is called a gauge transformation . Next we

define the two-form
1
(4.3.5) F=dA+ 5[/1, Al
on U. The commutator of Lie algebra valued one-forms is defined by
[Aa B](u7 U) - [A(U), B(U)] _ [A(U)a B(U)]

for a pair u, v of tangent vectors. We shall compute the effect of a gauge transfor-

mation (U, 1) — (V,¢) on F:
F=dA+1[A A
=g 'dA'g— g7 dg, g7  A'g) — L[g  dg, g dg]
+ilg7 A+ g " dg, g Alg + g~ dg]
— g7 dA' + LA A))g = g Fy.

The curvature form F' is a pull-back under v of a gobally defined two-form €2 on
P. The latter is defined by

Q,(u,v) = a” ' Fy(mu, mv)a,

where p € 771(z), u,v tangent vectors at p and a € G is an element such that

p = Y¥(x)a. The left-hand side does not depend on the local section. Writing
p=¢(x)a = p(x)g(x)a’ we get

o T E! (mu, mv)a’ = o' " tg(x) T E, (mu, mo)g(x)a’ = a7 Fy(mu, mv)a.
Since A is the pull-back of w and F' is the pull-back of €2 we obtain from 4.3.5

1
(4.3.6) Q=dw+ §[w,w]

Exercise 4.3.7. Prove the Bianchi identity dF + [A, F] = 0. (The 3-form [A, F]
is defined by an antisymmetrization of [A(u), F'(v,w)] with respect to the triplet

(u,v,w) of tangent vectors.)
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Let (P, 7, M) be a principal G bundle and p : G — AutV a linear representation
of G in a vector space V. We define the manifold P x5V to be the set of equivalence
classes Px V/ ~, where the equivalence relation is defined by (p,v) ~ (pg~—1, p(g)v),
for ¢ € G. There is a natural projection § : P xg V. — M, [(p,v)] — 7(p).
The inverse image 0~1(z) = V, since G acts freely and transitively in the fibers
of P. The linear structure in a fiber 871(z) is defined by [(p,v)] + [(p,w)] =
[(p,v + w)], AM[(p,v)] = [(p, Av)]. Local trivializations of P xg V are obtained from
local trivializations p — (7(p), #(p)) € M x G of P by [(p,v)] — (7 (p), p(¢(p))v).
Thus P X V is a vector bundle over M, the vector bundle associated to P via the
representation p of G.

Example 4.3.8. Let P = SU(2),M = S? = SU(2)/U(1),G = U(1),V =C
and p(\) = A2 for A € U(1). The associated vector bundle E = SU(2) x U(I)C is in
fact the tangent bundle of the sphere S?. The isomorphism is obtained as follows.
Fix a linear isomorphism of C = R? with the tangent space of S? at the point z,
which has as its isotropy group the given U(1). The map E — T'S? is defined by
(g,v) — D(g)v, where D(g) is the 2-1 representation of SU(2) in R3. The tangent

vectors of S? are represented by vectors in R? by the natural embedding S? C R3.

4.4. Parallel transport

Let H be a connection in a principal G bundle (P, 7, M). A horizontal lift of a
smooth curve 7(t) on the base manifold M is a smooth curve v*(¢) on P such that

the tangent vector 4*(t) is horizontal at each point on the curve and 7(~v*(t)) = ~(t).

Lemma 4.4.1. Let X(t) be a smooth curve on the Lie algebra g of G, defined on
an interval [to,t1]. Then there exists a unique smooth curve a(t) on G such that

a(t)a(t)™t = X (t)Vt € [to, t1] and such that a(ty) = e.
Proof. See Kobayashi and Nomizu, vol. I, p. 69.

Proposition 4.4.2. Let y(t) be a smooth curve on M and p an element in the

fiber over ~(tg). Then there exists a unique horizontal lift v*(t) of v(t) such that

v*(to) = p-

Proof. Choose first any (smooth) curve ¢(t) on P such that 7(¢) = v and ¢(tg) = p.
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We are looking for the solution in the form v*(¢) = ¢(t)g(t), where g(t) is a curve
on G such that g(tg) = e. Now v*(¢) is a solution if

V() = oy - 0(1) + (g(t) " 9(1)) ()9 (t)]

is horizontal. Let w be the connection form of the connection H. A tangent vector
on P is horizontal if and only if it is in the kernel of w. We get the differential

equation

0= w(¥*(t) = wrgm o) + w(lgt) g o) g(t)])
= adw(o(t)) + g(t) " 'a(t).

Applying ad, to this equation we get

9()g(t)"! = ~w(o(t)).
The solution g(t) exists and is unique by the previous lemma.

Example 4.4.3. Let P = M xU(1), M simply connected. A connection form w
can be written as w(, ¢)(u, a) = Az (u)+g¢~'-a, where u is a tangent vector at « € M
and a is a tangent vector at g € U(1); the Lie algebra of U(1) is identified by the set
of purely imaginary complex numbers. Let (¢) be a curve on M. The horizontal

lift of v(¢) which goes through (v(t),g) at time ¢t = 0 is v*(¢) = (y(¢), g(t)) with

g(t) = g - exp (/Ot —AWS)(ﬁ(s))dS) .

In particular, for a closed contractible curve, v(0) = (1), we get by Stokes’s theorem

g(1)=g- exp(—/ F),

S

where F' = dA is the curvature two-form and the integration is taken over any
surface on M bounded by the closed curve ~.

We define the parallel transport along a curve y(t) on M as a mapping 7T :
7 Hxo) — 71 (21) (o = Y(to), x1 = y(t1) points on the curve). The value 7(pg)
for pg € 771 (xg) is given as follows: Let v*(¢) be a horizontal lift of v(¢) such that
7*(to) = po- Then 7(po) = v*(t1).

Exercise 4.4.4. Prove the following properties of the parallel transport.

(1) Tory=ryo07vg € G
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(2) If v1 is a path from zy to x1 and 5 is a path from z; to x5 then the parallel
transport along the composed path 5 %77 is equal to the product of parallel
transport along ~; followed by a parallel transport along ~s.

(3) The parallel transport is a one-to-one mapping between the fibers 71 (zg)

and 7 (xy).

4.5. Covariant differentiation in vector bundles

Let E be a vector bundle over a manifold M with fiber V', dim V' = n. The vector
space V is defined over the field K = R or K = C. A vector bundle can always be
thought of as an associated bundle to a principal bundle. Namely, let P, denote the
space of all linear frames in the fiber E, for x € M. Using the local trivializations
of F it is not difficult to see that the spaces P, fit together and form naturally a
smooth manifold P. Fix a basis w = {wy,...,w,} in E,. Then any other basis of
E, can be obtained from w by a linear tranformation w, = > A;;w, and therefore
P, can be identified with the group GL(n,K) of all linear transformations in K"; it
should be stressed that this identification depends on the choice of w. However, we
have a well-defined mapping P x GL(n,K) — P given by the basis transformations
and this shows that P can be thought of as a principal GL(n,K) bundle over M.

The vector bundle F is now isomorphic with the associated bundle P x, K",
where p is the natural representation of GL(n,K) in K". The isomorphism is defined
as follows. Let w € P, and a € K" We set ¢(w,a) = > a;w;. This gives a
mapping from P x K" to E which is obviously linear in a. For a fixed w the
mapping a — ¢(w, a) gives an isomorphism between K" and E,. Let w’ = w- g and
a’ = p(g~1)a for some g € GL(n,K). We have to show that ¢(w’,a’) = ¢(w,a);

but this follows immediately from the definitions.

Often the bundle E can be thought of as an associated bundle to a principal bun-
dle with a smaller structure group than the group
G L(n,K). This happens when there is some extra structure in E. For example,
assume there is a fiber metric in E: This means that there is an inner product
< -,- >, in each fiber E, such that z —< ¢(x),v¥(z) >, is a smooth function for

any (local) section 1. We can then define the bundle of orthonormal frames in F
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with structure group U(n) in the complex case and O(n) in the real case. The
vector bundle F is now an associated bundle to the bundle of orthonormal frames.

We shall now assume that F is given as an associated vector bundle P x, V to
some principal bundle P, with a connection H, over M. Let G be the structure
group of P. For each vector field X on M we can define a linear map Vx of the

space ['(E) of sections into itself such that

(1) Vx4yy =Vx + Vy

(2) Vix = fVx

3) Vx(fep) = (X + fVx
for all vector fields X,Y, smooth functions f and sections . We shall give the
definition in terms of a local trivialization £ : U — P, where U C M is open.

Locally, a section v : M — E can be written as

where ¢ : U — V is some smooth function. Let A denote the pull-back £*w of the
connection form w in P. The representation p of G in V' defines also an action of

the Lie algebra g in V. We set

Vxt = (£ Xo+ A(X)o),

where A(X) is the Lie algebra valued function giving the value of the one-form A
in the direction of the vector field X.

We have to check that our definition does not depend on the choice of the local
trivialization. So let £'(x) = &(z) - g(x) be another local trivialization, where ¢ :
U — @ is a smooth function. The vector potential with respect to the trivialization
¢is A’ = g 1Ag+ g ldg. Now (&,¢) ~ (¢,¢"), where ¢’ = g71¢ (we simplify the
notation by dropping p) and therefore (¢, X¢' + A’(X)¢’) is equal to

&, —g " (Xg)g 'o+9 ' Xo+ (g 'Ag+ g ' Xg)g~ ')

= (£, 97 (X + A(X)p)) ~ (£, XP+ A(X)9)

which shows that V x is well-defined.
Exercise 4.5.1. Prove that Vx defined above satisfies (1)-(3).
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The commutator of the covariant derivatives V x is related to the curvature of

the connection in the following way:
Vx, Vyl = (& [X + AX),Y + A(Y)]¢)
=X Y]+ X-AY) -V - A(X) 4 [A(X), A(Y)])9)
= (& (F(X,Y) + [X, Y]+ A([X, Y])9)
where F' = dA + 3[A, A]. Thus we can write
Vx,Vy] = Vixy = F(X,Y)

when acting on the functions ¢.

A section v is covariantly constant if Vxi¢ = 0 for all vector fields. From the
above commutator formula we conclude that one can find at each point in the base
space a local basis of covariantly constant sections of the vector bundle if and only

if the curvature vanishes.

4.6. An example: The monopole line bundle
Construction of the basic monopole bundle

Let G be a Lie group and g its Lie algebra. Let us denote by ¢, the left translation
l,(a) = ga in G. The left invariant Maurer-Cartan form 6, = g~'dg is the g-valued
one form on G which sends a tangent vector X at g € G to the element E;lX eTl.G
in the Lie algebra. Similarly, we can define the right invariant Maurer-Cartan form
Or = dgg~", Or(9;X) = r;'X. By taking commutators, we can define higher
order forms. For example, the form [¢~1dg, g~ 1dg] sends the pair (X,Y) of tangent
vectors at g to 2[(, ' X, (Y] € g.

Taking projections to one dimensional subspaces of g we get real valued one-
forms on G.

Let < -,- > be a bilinear form on g and ¢ € g. Then o =< 0,9 'dg > is a
well-defined one form. Let us compute the exterior derivative of a. Let X,Y be a

pair of left invariant vector fields on G. Now
da(g; X, Y)=X-aY) =Y - a(X) — o([X,Y])

= —a([X,Y))
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since a(Y)(g) =< 0,£,'Y > is a constant function on G and similarly for a(X).
Since the left invariant vector fields on a Lie group span the tangent space at each
point, we conclude

da = — < 0, %[g_ldg,g_ldg] > .

We have not yet defined the exterior derivative of a Lie algebra valued differential

form, but motivated by the computation above we set

_ 1. _ _
d(g 1dg)=—§[g Ydg, g~ 'dg).

A bilinear form < -,- > on g is invariant if
<[ X,)Y],Z>=—-<Y,[X,Z] >

for all X, Y, and Z. Given an invariant bilinear form, the group G has a natural

closed three-form c3 which is defined by
c3(g: XY, 2) =< 0, X, [0, 'Y 0,1 Z) > .

Thus
c3 =< g 'dg,%[g"'dg, 9" dg] > .

Proposition 4.6.1. dcg = 0.

Proof.. Recall the definition of the exterior differentiation d: If w is a n-form and
Vi,..., V11 are vector fields, then

n+1
dw(Vi, oo Vog1) = > (1) Vi w(Vi, o, Vi, o, Vi)

=1
+ Z(_l)l-i-jw([‘/“ ‘/j]) V17 Tt ‘77:7 ARD) ‘A/j7 RS Vn+1)7
i<j
where the caret means that the corresponding variable has been dropped. Let

us compute dcg for left invariant vector fields Xi,..., X4. Taking account that

c3(Xi, Xj, X) is a constant function we get

ng(Xl, X4> =—2< [Xl,XQ], [Xg,X4] > 42 < [Xl,Xg], [X27X4] >
—2< [Xl,X4], [XQ,Xg] >
=2 < X17 [[X37X4]7X2] - HX27X4]7X3] + [[X27X3]7X4] >

=0
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by Jacobi’s identity.

If G is a group of matrices we can define an invariant form on g by < X,Y >=

tr XY. Then the form c3 can be written as
c3 = tr (g~ tdg)®.

As an example we shall consider in detail the case G = SU(2). Let o3 =
(é _Oz> and define the one-form o = —itrosg~'dg. Remember that SU(2) —
SU(2)/U(1) = S? is a principal U(1) bundle. The form « is invariant with respect
to right translations g — gh by h € U(1). Thus « is a connection form in the bundle
SU(2) [the Lie algebra of the structure group U(1) can be identified with iR]. Let
us compute the curvature. The exterior derivative of « is itr o3lg~tdg, g~ tdg].
A tangent vector at z € S? can be represented by a tangent vector £, X at g €
n71(z),X € g, such that X is orthogonal to the U(1) direction, tro3X = 0.
The curvature in the base space S? is then Q(X,Y) = 1tros[X,Y]. The form
Q is x the volume form on S?: If {X,Y} is an ortonormal system at = € 52,
then [X,Y] = +£103 (exercise), the sign depending on the orientation. We obtain
Q(X,Y) = +itro3 = £1.

The basic monopole line bundle is defined as the associated bundle to the bundle
SU(2) — S?, constructed using the natural one dimensional representation of U (1)
in C.

Embedding S? C R3 and using Cartesian coordinates {z1, 2,23} we can write

the curvature form as

1 .
O = 4—7“382‘7k£13id.’11'j A dxy,

2 = 22 + 22 + 22 is equal to 1 on S?. However, we can extend ) to the

where r
space R?\ {0} using the above formula. The coefficients of the linearly independent
forms dzo A dxs, drs A dri and dxq A drs form a vector B = ﬁ(ml,xz,xg) = %

The field B satisfies

(1) V-B=0
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i.e., it satisfies Maxwell’s equations in vacuum. On the other hand,

(3) / B.dS = or
SQ

for any sphere containing the origin. Because of these properties, the field B can
be interpreted as the magnetic field of a magnetic monopole located at the origin.
The integral (3) multiplied by the dimensional constant 1/e (e is the unit electric

charge) is called the monopole strength.
The first Chern class

The magnetic field of the monopole is the curvature of a circle bundle over the
unit sphere S?. The circle bundle we have constructed is a ”generator” for the
set of all circle bundles over S2. In general, a principal U(1) bundle over S? can
be constructed from the transition function £ : S_ N S. — U(1) (cf. 3.2.3). The
intersection of the coordinate neighborhoods S+ is homeomorphic with the product
of an open interval with the circle S!. It follows that the set of maps ¢ decomposes
to connected components labelled by the winding number of a map S — U(1).
Let & be the transition function of the bundle SU(2) — S? with respect to some
fixed local trivializations on S4. The winding number of &; is equal to one. The
winding number of £, = (£;)" is equal to n. Let P(n) be the bundle constructed
from &,,. Let AL be the vector potentials on Si corresponding to the chosen local
trivializations and the connection in SU(2) described above.

We have A, = A_ +£71d€ on S_ NS, and therefore nA, = nA_ + &,1d¢,.
Thus nA is a connection in the bundle P(n) and the curvature of P(n) is n times
the curvature form €2 of the (basic) monopole bundle. The monopole strength of
the bundle P(n) is 2mn/e.

The cohomology class [Q2] € H?(S% R) is the first Chern class of the bundle.
It depends only on the equivalence class of the bundle and not on the chosen
connection; we shall return to the proof of the topological invariance of the Chern
classes in a more general context later, but as an illustration of the general ideas
we give a simple proof for the case at hand. Let B+ be the vector potentials on S+
of some connection in the bundle P(n). We have By = B_ +nf~1d¢ and therefore
Ay—By =A_—B_on S;.NS_. It follows that A— B is a globally defined one-form
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on S2; the difference of the curvatures corresponding to the connections A and B
is equal to d(A — B).

The first Chern class of a circle bundle (or an associated complex line bundle)
over a manifold M can be evaluated from the knowledge of the U(1) valued tran-
sition functions [R. Bott and L.W. Tu: Differential forms in algebraic topology].
In the example above we needed only one transition function £. A representative
Q) for the Chern class can be constructed from a vector potential (A,, A_) such
that A_ =0 for z3 < %, A, is equal to £71d€ on the strip —% <xg < %, and Ay
is contracted smoothly to zero when approaching the north pole x3 = 1. The first

Chern class is always quantized in the sense that the integral of the two-form 2

over any two-dimensional compact surface is 27 times an integer.

4.7. Chern classes

We shall consider polynomials P(A) of a complex N x N matrix variable A
which are invariant in the sense that P(gAg~!) = P(A) for all g € GL(N,C). For

example, if we expand

N
A
4.7.1 1+ —A) = "P.(A
(4.7.1) det( + o ) REZO:A (A)

then the coefficients P, (A) are homogeneous invariant polynomials of degree n in

A. These polynomials will play a special role in the following discussion.

To each homogeneous polynomial P(A) one can associate a unique symmetric
multilinear form P(Ay,...A,) such that P(A,..., A) = P(A). The general formula

for the n linear form in terms of P(A) is

1
P(Aq,...,Ay) :E{P(A1+---+An)
=) P(Ar+-+Aj 4+ Ay)
j

A

+ Y PA 4. A Ay Ay) =L

7<J’

with flj deleted. When P(A) is invariant we clearly have P(gA1g7t,...,gA,g7 ) =
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P(Ay,...,A,). Writing g = g(t) = exp(tX) we get the useful formula

d

0= = Plg(t)Arg(t) ™", g(1) Ang(t)™)li=o

(4.7.2) =Y P(Ay,...,[X,Aj),..., Ay).

If F; is a N x N matrix valued differential form of degree k; on a manifold M,
1 <17 <n, and P a symmetric n linear form then we can define a complex valued

differential form P(F1y,..., F,) of degree k1 + ---+ k, = p by

P(Fla---aFn)(tla"‘7tp):

1
(H H) > (@) P(Fi(to(rys- - stoe)s- - Fnltooeintt)s- - o)

o
where the sum is taken over all permutations of the indices 1,2,...,p.

Let F be the curvature form of a vector bundle E over M with fiber CV. The cur-
vature transforms in a change of a local trivialization as F' — ¢gF¢~! and therefore
P(F, ..., F)is well-defined, independent of the local trivialization, for any invariant

symmetric polynomial P.

Proposition 4.7.3. The symmetric  homogeneous  polynomial  P(F,

.., F) of degree n in the curvature F is a closed form of degree 2n.
Proof. Locally we can write F},, = 0,4, — 0, A, + [A,, A,]. Using the property
d(a A B) =dan B+ (—=1)%9% A dB of differential forms we have

dP(F,...,F)=> P(F,...,dF,...,F)

J
(4.7.4) => {P(F,...,DF,...,F) = P(F,...,[A,F),...,F)}.

J
The covariant derivative DF' = 0 by the Bianchi identity and the sum of the terms
involving [A, F] is zero by (4.7.2).

In particular, the class in H?"(M,R) defined by the closed 2n form Re P, (F) is
called the nth Chern class of the bundle E and is denoted by ¢, (F).

Theorem 4.7.5. The Chern classes are topological invariants: They do not depend

on the choice of connection in the vector bundle E.

Proof. Let Ag and A; be two connections in F and Fp, F; the corresponding curva-

tures. Define a one-parameter family A; = Ay +1n of connections with n = A; — Ag;
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note that the difference n transforms homogeneously in a change of local trivializa-
tion, n — gng~!. Let us introduce the notation Q(A, B) = nP(A, B, ..., B) when

B is repeated n — 1 times. Using

1 1
Fy =dA; + §[AtaAt] = Iy +tDn+ §t2[77a77]a

where D is the covariant derivative determined by Ag, we get

d d

(4.7.6) %P(Ft) = Q(%F“FQ = Q (Dn, Fy) +tQ([n, 1], Fy).

On the other hand,

(4.7.7)
dQ(n, Ft) =Q(dn, Fy) —n(n — 1)P(n, dFy, Fy, ..., Fy)

:Q(dTI?Ft) _n(n_ 1)P(777dFt7Ft7' "7Ft)
+nP([Ao,n], Fy, ..., Fy) —n(n —1)P(n, [Ao, Fi], ..., F})
:Q(Dn7Ft) —n(n— ]‘)P(nvDFth?"'aFt)

:Q(DnaFt)+tn(n_1)P(n7 [naFt]aFtw"aFt)

where we have used DF; = DFy + tD?*n+t?[Dn, n| = t[Fo,n] + t*[Dn, n] = t[F, 1),
since [[n,n],n] = 0 by Jacobi identity. By (4.7.2) we have

P([n,n), Ft,...,Ft) — (n—1)P(n,[n, F|, F,...,F;) =0

or in other words,

Q([n,nl, Ft) —n(n —1)P(n,n, Ft), Fy, ..., Fy) = 0.

Using (4.7.7) we get

dQ(na Ft) - Q(D% Ft) + tQ([na 77]7 Ft)

and with (4.7.6) we obtain

(4.7.8) ©P(F) = dQ(, ).

Integrating this result over the interval 0 <t <1 we get

P@n—P@wsz<mmEMt
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which shows explicitly that the difference of the differential forms P(F}) and P(Fp)

is an exact form.

Given a Hermitian inner product in the fibers of the vector bundle F it is always
possible to choose a Hermitian connection, that is, a connection such that in an
orthonormal basis the vector potential takes values in the Lie algebra of the uni-
tary group U(N). In that case the determinant det(1 + 52-F) is real for any real
parameter A and the Chern classes are given by the expansion in powers of A; the

first two positive powers lead to

1

a(F) = %trF
eo(F) = 5 (2;)2 —tr F? + (tr F)2].

The coefficients in the expansion can be best computed by diagonalizing the matrix

F. Writing F' = diag(a, ..., an) one obtains

det (1 + 2%1?) =11 (1 + %";) = zﬂ: (%)nsn(a)

k

with

1 1
So=1,5 =tra, Sy = i(troz)2 — §tra2
1 1 1
S3 = é(tra)?’ — 5‘51‘042 tro + gtra?’
etc. Note that ¢, vanishes identically if n > %dimM orn > N.Ifn = %dimM

then we can integrate the form ¢, (F) over M and the value of the integral is called

the Chern number associated to the vector bundle F.

Example 4.7.9. Consider a vector bundle F over M = S* such that the
transition functions take values in the group SU(N), N > 2. Dividing S* to the
upper and lower hemispheres St the bundle is given by the transition function ¢
along the equator S3. The vector potentials A4 are then related by A_ = ¢pA p~ 1 —
d¢p¢~1 on the equator. Using the formula tr F'? = dtr (FAA— %A?’) we can compute
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the Chern number corresponding to the second Chern class,

1 1
— | wF24+_— | trF?
87T2 Sir++8ﬂ-2/s4_r_
1
=33 - [tl"(F+/\A+—%Ai)—tr(F_/\A__%AB_)]
~ Sn2 o [tr %(d¢¢_1)3 — dtr (Ay Ndgg™1)]

= 2417# /SS tr (dgg ™).

Remark 4.7.10. The value of the integral above is an integer which depends

only on the homotopy class of the map ¢ : S3 — SU(N). This follows from the fact
that the form tr (dgg—')® on any Lie group is closed (section 4.6) and from Stokes’
theorem applied to the integral fol dtd [, tr (depegpy1)? for a l-parameter family
of maps ¢;; S — SU(N).

Since the equivalence class of the bundle F depends only on the homotopy class
of the transition function ¢, the Chern number [ co(E) gives a complete topological
characterization of F.

The Chern character ch(FE) of a vector bundle is defined as follows. It is a formal
sum of differential forms of different degrees,

1
ch(FE) = tr exp (2—F> :

T

where again F' is the curvature form of . When the exponential is evaluated as a

power series we obtain
O

1 k
=0

Clearly all the terms can be expressed using the Chern classes; the three first terms

are

ch(E) = N + e1(E) + %cl(E) Aer(E) —ea(E) + ...

The Chern character is a convenient tool because one has
ch(E® E'") =ch(E)+ch(E') ch(E®E') =ch(E)-ch(E").

This follows immediately from the definition and the elementary properties of the

exponential function.
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Above we have studied characteristic classes of complex vector bundles. The
most important characteristic classes for real vector bundles are the Pontrjagin
classes and they are constructed as follows.

Let m : E — M be a real vector bundle over the manifold M. We can always
think a real vector bundle as an associated vector bundle to a principal bundle P
with structure group GL(n,R). We fix a metric in the fibers of E, so it makes sense
to speak about orthonormal frames in the fibers. This means that we can consider
E as an associated bundle to a principal O(n) bundle; the principal bundle is simply
the bundle of orthonormal frames.

Thus we are led to studying connections in principal O(n) bundles. A connection
form takes values in the Lie algebra of O(n), that is, in the Lie algebra of real
antisymmetric n X n matrices.

If we choose a local section of the principal O(n) bundle then the curvature
form F' is a local matrix form on the base space M and in gauge transformations
F' =g 1Fg.

A real antisymmetric matrix can be brought to the canonical form

>
[y

0
0
0
0

When n = 2k is even the matrix consist of k antisymmetric 2 x 2 matrices on the
diagonal; when n = 2k 4+ 1 then the last column and the last row consists of only

zeros. The eigenvalues of the matrix are £i);.

We define

ey = e (14 2) =TT (14 )

1=
Clearly p(F) = p(—F) so that p is a polynomial of even degree in the curvature

tensor F. We write

p(F)=1+p1(F) +p2(F) + ...

as a sum of homogeneous terms p;(F') of degree 2j in the curvature. Since F is a

2-form, p;(F') is a differential form on M of degree 4j.
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Note that p;(F) depends only on the eigenvalues of F},, and therefore it is
invariant with respect to gauge transformations and thus gives a globally well-
defined form on M.

Exactly as in the case of Chern classes we expand each p; in powers of the

curvature tensor F. The lowest Pontrjagin classes are

1, 1

pi(F) = —5(3-) tr 7

() = S GE? =5 (8 )~ G
= ) [ F?)? 2 ]

ps(F) = i;k@—;)?(;—;)%;—p? -
= %(%)6 [—(tr F2) + 6tr F? - tr F* — 8tr F°) .

We shall meet later another set of characteristic classes, called the A-roof genus,

which are actually formed from the Pontrjagin classes. The definition is best set

Bg x2£> :

where By are the Bernoulli numbers and x; = A;/27. In terms of Ponrjagin classes,

up in terms of eigenvalues of the matrix form F)

- xj/2
AF) = H smh(/ /2) H (1 +Z

J

. 1 1
A(F)=1— =p; + ——(Tp? — 4ps) +

24 5760 (_31]?? + 44p1py — 16p3) + .. ..

967680

Further reading: Nakahara, Chapters 9-11. The proof above of the topological
invariance of the Chern classes follows S.S. Chern: Complex Manifolds without
Potential Theory. Princeton University Press (1979). On characteristic classes see
also: J.W. Milnor and J.D. Stasheff: Characteristic Classes. Princeton University
Press (1974).



