
CHAPTER 4: PRINCIPAL BUNDLES

4.1 Lie groups

A Lie group is a group G which is also a smooth manifold such that the mul-

tiplication map G × G → G, (a, b) 7→ ab, and the inverse G → G, a 7→ a−1, are

smooth.

Actually, one can prove (but this is not easy) that it is sufficient to assume

continuety, smoothness comes free. (This was one of the famous problems listed

by David Hilbert in his address to the international congress of mathematicians

in 1900. The result was proven by A. Gleason, D. Montgomery and L. Zippin in

1952.)

Examples The vector space Rn is a Lie group. The group multiplication is just

the addition of vectors. The set GL(n,R) of invertible real n× n matrices is a Lie

group with respect to the usual matrix multiplication.

Theorem. Any closed subgroup of a Lie group is a Lie group.

The proof is complicated. See for example S. Helgason: Differential Geometry,

Lie Groups and Symmetric Spaces, section II.2.

The theorem gives an additional set of examples of Lie groups: The group of real

orthogonal matrices, the group of complex unitary matrices, the group of invertible

upper triangular matrices ....

For a fixed a ∈ G in a Lie group we can define a pair of smooth maps, the left

translation la : G→ G, la(g) = ag, and the right translation ra : G→ G, ra(g) = ga.

We say that a vector field X ∈ D1(G) is left (resp. right) invariant if (la)∗X = X

(resp. (ra)∗X = X) for all a ∈ G.

Since the left (right) translation is bijective, a left (right) invariant vector field is

uniquely determined by giving its value at a single point, at the identity, say. Thus

as a vector space, the space of left invariant vector fields can be identified as the

tangent space TeG at the neutral element e ∈ G.

Theorem. Let X,Y be a pair of left (right) invariant vector fields. Then [X,Y ] is

left (right) invariant.
45
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Proof. Denote f = la : G→ G. Recall that

X ′
i = (f∗X)i =

∂yi

∂xj
Xj ,

where we have written the map f in terms of local coordinates as y = y(x). Then

[X ′, Y ′]i = X ′j∂′jY
′i − Y ′j∂′jX ′i = Xj∂jY

′i − Y j∂jX ′i

= Xj∂j(
∂yi

∂xk
Y k)− Y j∂j(

∂yi

∂xk
Xk)

=
∂yi

∂xk
(Xj∂jY

k − Y j∂jXk) +
∂2yi

∂xj∂xk
(XjY k − Y jXk).

The second term on the right vanishes since the second derivative is symmetric.

Thus we have [X ′, Y ′] = [X,Y ]′, i.e., [(la)∗X, (la)∗Y ] = (la)∗[X,Y ]. Thus the com-

mutator is left invariant.

It follows that the left invariant vector field form a Lie algebra. This Lie algebra

is denoted by Lie(G) and it is called the Lie algebra of the Lie group G. Observe

that dimLie(G) = dimTgG = dimG.

Example 1 Let G = Rn. The property that a vector field X = Xi∂
i is left (right)

invariant means simply that the coefficient functions Xi(x) are constants. Thus left

invariant vector fields can be immediately identified as vectors (X1, . . . , Xn) in Rn.

Constant vector fields commute, thus Lie(Rn) is a commutative Lie algebra.

Example 2 Let G = GL(n,R). Let X be a left invariant vector field and

z = X(1) = d
dte

tz|t=0. Then

X(g) =
d

dt
getz|t=0 = gz.

This implies that

(X · f)(g) =
d

dt
f(getz)|t=0 = (

d

dt
getz)ij |t=0

∂

∂xij
f(x)|x=g = gikzkj

∂

∂gij
f.

When Y is another left invariant vector field with w = Y (1), then

[X,Y ] = [gikzkj
∂

∂gij
, glmwmp

∂

∂glp
]

= gikzkjwjp
∂

∂gip
− glmwmpzpj

∂

∂glp

= gik[z, w]kp
∂

∂gip
.
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That is, the commutator of the vector fields X,Y is simply given by the com-

mutator [z, w] of the parameter matrices.

Example 3 The group SO(n) ⊂ GL(n,R) of rotations in Rn. Each antisym-

metric matrix L defines a 1-parameter group of rotations by R(t) = etL. The

tangent vector of this curve at t = 0 is L. We can define a left invariant vector field

as above as X(g) = gL. The commutator of a pair of antisymmetric matrices is

again antisymmetric. The condition that L is antisymmetric is necessary in order

that it is tangential to the orthogonal group at the identity: Take a derivative of

R(t)tR(t) = 1 at t = 0! Thus the Lie algebra of SO(n) consists precisely of all

antisymmetric real n × n matrices. When n = 2 we recover the 1-dimensional

group of rotations in the plane (the Lie algebra is commutative) and when n = 3

we get the 3-dimensional group of rotations in R3 and its Lie algebra is the angular

momentum algebra.

The complex unitary group U(n) has as its Lie algebra the algebra of antiher-

mitean matrices. This is shown by differentiating R(t)∗R(t) = 1 at t = 0 for

R(t) = etL. The Lie algebra of SU(n) is given by antihermitean traceless matrices.

Here SU(n) ⊂ U(n) is the subgroup consisting of matrices of unit determinant.

In the case of a matrix Lie group we have an exponential mapping exp : Lie(G)→

G from the Lie algebra to the corresponding Lie group, which is given through the

usual power series expansion eX = 1 + X + 1
2!X

2 . . . . This is because the left

invariant vector fields are parametrized by the value of the tangent vector at the

identity which is equal to the derivative of a 1-parameter group of matrices at the

identity. The exponential mapping, which has a central role in Lie group theory,

can be generalized to arbitrary Lie groups. If X is a left invariant vector field on

the group then, at least locally, there is a unique curve g(t) with g(0) = 1 and

g′(t) = X(g(t)) by the theory of first order differential equations. In fact, it is easy

to see that this solution is actually globally defined by a use of group multiplication.

Since X is left invariant we have g′(t) = `g(t) · X(1), that is, X(1) = `−1
g(t) · g

′(t).

The exponential mapping is then defined as

eX = g(1).

See S. Helgason, Chapter II, for more details.
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Exercise Prove with the help of the chain rule of differentiation that etXesX =

e(t+s)X in every Lie group, for real t, s and for any left invariant vector field X.

Let X1, . . . , Xn be a basis of Lie(G). Then

[Xi, Xj ] = ckijXk

for some numerical constants ckij , the so-called structure constants. Since the Lie

bracket is antisymmetric we have ckij = −ckji and by the Jacobi identity we have

ckijc
m
kl + cklic

m
kj + ckjlc

m
ki = 0

for all i, j, l,m. In terms of the left invariant vector fields Xi, any tangent vector v

at g ∈ G can be written as v = viXi(g). Let us define θi ∈ Ω1(G) as θi(g)v = vi.

We compute the exterior derivative dθi :

dθi(g)(Xj , Xk) = Xjθ
i(Xk)−Xkθ

i(Xj)− θi([Xj , Xk])

= Xjδik −Xkδij − θi(cljkXl) = −cijk.

On the other hand,

(θi ∧ θj)(Xk, Xl) = θi(Xk)θj(Xl)− θi(Xl)θj(Xk) = δikδjl − δilδjk.

Thus we obtain Cartan’s structural equations,

dθi = −1
2
ciklθ

k ∧ θl.

Denote Xiθ
i = g−1dg. This is a Lie(G)-valued 1-form on G. It is tautological at

the identity: (g−1dg)(v) = v for v ∈ T1G. For θ = g−1dg the structural equations

can be written as

dθ +
1
2

[θ ∧ θ] = 0,

where [θ ∧ θ] = [Xi, Xj ]θi ∧ θj .

A left action of a Lie group G on a manifold M is a smooth map G×M →M,

(g, x) 7→ gx, such that g1(g2)x = (g1g2)x for all gi, x and 1 · x = x when 1 is the

neutral element. Similarly, one defines the right action as a map M × G → M,

(x, g) 7→ xg, such that x(g1g2) = (xg1)g2 and x · 1 = x.

The (left) action is transitive if for any x, y ∈M there is an element g ∈ G such

that y = gx and the action is free if for any x, gx = x only when g = 1. The action
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is faithful if gx = x for all x ∈M only when g = 1. The isotropy group at x ∈M is

the group Gx ⊂ G of elements g such that gx = x.

Example 1 Let H ⊂ G be a closed subgroup of a Lie group G. Then the left

(right) multiplication on G defines a left (right) action of H on G.

Example 2 Let H ⊂ G be a closed subgroup in a Lie group. Then the space

M = G/H of left cosets gH is a smooth manifold, see S. Helgason, section II.4.

There is a natural left action given by g′ · (gH) = g′gH. In general, when G acts

transitivly (from the left) on a manifold M, we can write M = G/H with H = Gx

for any fixed element x ∈M. The bijection φ : G/H →M is given by φ(gH) = gx.

For example, when G = SO(3) and H = SO(2) the quotient M = SO(3)/SO(2)

can be identified as the unit sphere S2. Similarly, SU(3)/SU(2) can be identified as

the sphere S5. The sphere S5 is equal to the set of points (z1, z2, z3) ∈ C3 such that

|z1|2 + |z2|2 + |z3|2 = 1. The point (1, 0, 0) is left invariant exactly by the elements

in the subgroup SU(2) ⊂ SU(3) operating in the z2z3-plane. On the other hand,

SU(3) acts transitivly on S5 and so S5 = SU(3)/SU(2).

Let a left action of a Lie group G on a manifold M be given. Then for each

X ∈ Lie(G) there is a canonical vector field X̂ onM defined by X̂(x) = d
dte

tX ·x|t=0.

Similarly, a right action gives a canonical vector field by differentiating x · etX . In

the case when M = G and the left action is given by the left multiplication on the

group, we have simply X̂ = X.

A Lie group G acts on itself also through the formula g 7→ g0gg
−1
0 for g0 ∈ G.

This is called the adjoint action and is denoted by Adg0(g) = g0gg
−1
0 . Note that the

adjoint action is a left action. Because of Adg0(1) = 1, the derivative of the adjoint

action at g = 1 gives a linear map, denoted by adg0 , from T1G to T1G, that is, we

may view adg as a linear map

adg : Lie(G)→ Lie(G).

In the case of a matrix Lie group we have simply adg(X) = gXg−1, matrix multi-

plication. Thus we have also

adg([X,Y ]) = [adg(X), adg(Y )]

for all X,Y ∈ Lie(G). This holds also in the case of an arbitrary Lie group. This

means that adg is an automorphism of the Lie algebra of G.
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Exercise Prove the above statement for an arbitrary Lie group.

We also observe, by the the chain rule for differentiation, that adgg′ = adg ◦ adg′

for all g, g ∈ G. This means that the map g 7→ adg is a representation of the Lie

group in the vector space Lie(G).

4.2. Definition of a principal bundle and examples

Let G be a Lie group and M a smooth manifold. A principal G bundle over M

is a manifold which locally looks like M ×G.

Definition 4.2.1. A smooth manifold P is a principal G bundle over the manifold

M, if a smooth right action of G on P is given, i. e., a map P×G→ P , (p, g) 7→ pg,

such that p(gg′) = (pg)g′∀p ∈ P and g, g′ in G, and if there is given a smooth map

π : P →M such that

(1) π(pg) = π(p) for all g in G.

(2) ∀x ∈ M there exists an open neighborhood U of x and a diffeomorphism

(local trivialization) f : π−1(U) → U × G of the form f(p) = (π(p), φ(p))

such that φ(pg) = φ(p)g ∀p ∈ π−1(U), g ∈ G.

The manifold P is the total space of the bundle, M is the the base space, and π is

the bundle projection. The trivial bundle P = M ×G is defined by the projection

π(x, g) = x and by the natural right action of G on itself.

Consider two bundles Pi = (Pi, πi,Mi;G) with the same structure group G. A

smooth map φ : P1 → P2 is a G bundle map , if φ(pg) = φ(p)g for all p and g. Two

bundles P1 and P2 are isomorphic if there is a bijective bundle map P1 → P2. An

isomorphism of a bundle onto itself is an automorphism .

If H ⊂ G is a closed subgroup then G is a principal H bundle over the homoge-

neous space G/H. The right action of H on G is just the right multiplication in G

and the projection is the canonical projection on the quotient.

Example 4.2.2. Take G = SU(2) and H = U(1)

H :
(
eiϕ 0
0 e−iϕ

)
, ϕ ∈ R.

A general element g of G is

g =
(
z1 −z2

z2 z1

)
,
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with |z1|2 + |z2|2 = 1. Writing z1 and z2 in terms of their real and imaginary parts

we see that the group G can be identified with the unit sphere S3 in R4. We can

define a map π : G → S2 by π(g) = gσ3g
−1, where σ3 is the matrix diag(1,−1);

elements of R3 are represented by Hermitian traceless 2×2 matrices. The Euclidean

metric is given by ‖x‖2 = −detx. The kernel of the map π is precisely U(1); thus

we have a U(1) fibration over S2 = SU(2)/U(1) in S3.

Exercise 4.2.3. Let S+ = {x ∈ S2|x3 6= −1} and S− = {x ∈ S2|x3 6= +1}.

Construct local trivializations f± : π−1(S±)→ S± × U(1).

The bundle S3 → S2 is nontrivial; it is not isomorphic to S2×S1 for topological

reasons. Namely, S3 is a simply connected manifold whereas the fundamental group

of S2×S1 is equal to π1(S1) = Z [M. Greenberg: Lectures on Algebraic Topology].

Let {Uα}α∈Λ be an open cover of the base space M of a principal bundle P and

let p 7→ (π(p), φα(p)) ∈ Uα×G be a set of local trivializations. If p ∈ π−1(Uα∩Uβ),

we can write

φα(p) = ξαβ(p)φβ(p),

where ξαβ(p) ∈ G. Now φα(pg) = φα(p)g and φβ(pg) = φβ(p)g from which follows

that ξαβ(pg) = ξαβ(p) and thus ξαβ can be thought of as a function on the base

space Uα∩Uβ . If p ∈ π−1(Uα∩Uβ ∩Uγ) and x = π(p), then φα(p) = ξαβ(x)φβ(p) =

ξαβ(x)ξβγ(x)φγ(p) so that

ξαβ(x)ξβγ(x) = ξαγ(x).

In general, a collection of G-valued functions {ξαβ} for the covering {Uα} is a one-

cocycle (with values in G) if the above equation holds for all x in Uα ∩Uβ ∩Uγ and

for all triples of indices.

If we make the transformations φ′α = ηαφα for some functions ηα : Uα → G,

then

ξαβ 7→ ξ′αβ = η−1
α ξαβηβ .

If we can find the maps ηα such that ξ′αβ = 1∀α, β, then ξαβ = ηαη
−1
β and we say

that the one-cocycle ξ is a coboundary.

Let (P, π,M), (P ′, π′,M ′) be a pair of principal G bundles and let f : P → P ′

be a bundle map. We define the induced map f̂ : M → M ′ by f̂(x) = π′(f(p)),

where p is an arbitrary element in the fiber π−1(x).
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Theorem 4.2.4. Let P and P ′ be a pair of principal G bundles over M. Let

{Uα, φα}α∈Λ (respectively, {Uα, φ′α}α∈Λ) be a system of local trivializations for P

(respectively, for P ′). Let ξαβ and ξ′αβ be the corresponding transition functions.

Then there exists an isomorphism f : P → P ′ such that f̂ = idM if and only if the

transition functions differ by a coboundary, that is, ξ′αβ(x) = ηα(x)−1ξαβ(x)ηβ(x)

in Uα ∩ Uβ for some functions ηα : Uα → G.

Proof. 1) Suppose first that ξ′αβ = η−1
α ξαβηβ for all α, β ∈ Λ. Define f : P → P ′ as

follows. Let p ∈ P and x = π(p). Choose α ∈ Λ such that x ∈ Uα. Using a local

trivialization (Uα, φ′α) at x we set f(p) = (x, fα(p)), where fα(p) = ηα(x)−1φα(p).

We have to show that the map is well-defined: If x ∈ Uα ∩ Uβ then φβ(p) =

ξβα(x)φα(p) and thus

fβ(p) = ηβ(x)−1φβ(p) = ηβ(x)−1ξβα(x)φα(p)

= ξ′βα(x)[ηα(x)−1φα(p)] = ξ′βα(x)fα(p).

We conclude that (x, fα(p)) and (x, fβ(p)) represent the same element in P ′. The

equation f(pg) = f(p)g follows from φα(pg) = φα(p)g.

2) Let f : P → P ′ be an isomorphism. We can define

ηα(x) = φα(p)φ′α(f(p))−1,

where p ∈ π−1(x) is arbitrary. It follows at once from the definition of the transition

functions that the collection {ηα}α∈Λ satisfies the requirements.

Let {ξαβ}α,β∈Λ be a one-cocycle with values in G, subordinate to an open cover

{Uα} on a manifold M . We can construct a principal G bundle P from this data.

Let C = q(α,Uα×G) be the disjoint union of all the sets Uα×G. Define an equiva-

lence relation in C by (α, x, g) ∼ (α′, x′, g′) if and only if x = x′ and g′ = ξα′α(x)g.

Set P = C/ ∼. The action of G in P is given by (α, x, g)g0 = (α, x, gg0). The

smooth structure on P is defined such that the sets Uα ×G are smooth coordinate

charts for P .

Exercise 4.2.5. Complete the construction of P above.

Let (P, π,M) be a principal G bundle. A (global) section of P is a map ψ : M →

P such that π ◦ ψ = idM .

Exercise 4.2.6. Show that a principal bundle is trivial if and only if it has a

global section.
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A local section consists of an open set U ⊂ M and a map ψ : U → P such

that π ◦ ψ = idU . If f : π−1(U) → U × G is a local trivialization we can define a

local section by ψ(x) = f−1(x, h(x)), where h : U → G is an arbitrary (smooth)

function.

Let H ⊂ G be a closed subgroup. We say that the bundle P has been reduced

to a principal H subbundle Q, if Q ⊂ P is a submanifold such that qh ∈ Q for all

q ∈ Q, h ∈ H,π(Q) = M and H acts transitively in each fiber Qx = π−1(x) ∩Q.

Any manifold M of dimension n carries a natural principal GL(n,R) bundle,

namely, the bundle FM of linear frames. The fiber FxM at a point x ∈M consists

of all frames (ordered basis) of the tangent space TxM . The group GL(n,R) acts

in FxM by (f1, f2, ..., fn)A = (
∑n
i=1Ai1fi,

∑n
i=1Ai2fi, ...,

∑n
i=1Ainfi), where the

fi’s are tangent

vectors at x and A = (Aij) ∈ GL(n,R). One can construct a local trivialization

by choosing a local coordinate system (x1, x2, ..., xn) in M . In local coordinates

the vectors of a frame f can be written as fi =
∑
fij∂j . This defines a mapping

f 7→ (fij) ∈ GL(n,R). The collection (∂1, ..., ∂n) of vector fields defines a local

section of FM .

If the manifold M has some additional structure the bundle FM can generally be

reduced to a subbundle. For example, if M is a Riemannian manifold with metric g,

then we can define the subbundle OFM ⊂ FM consisting of orthonormal frames

with respect to the metric g. If in addition M is oriented, then it makes sense to

speak of the bundle SOFM of oriented orthonormal frames: A frame (f1, . . . , fn)

at a point x is oriented if ω(x; f1, . . . , fn) is positive, where ω is a n form defining

the orientation. The structure group of OFM is the orthogonal group O(n) and of

SOFM the special orthogonal group SO(n) consisting of orthogonal matrices with

determinant=1.

Let g be the Lie algebra of the Lie group G. To any A ∈ g there corresponds

canonically a one-parameter subgroup hA(t) = exp tA. We define a vector field

Â on the G bundle P such that the tangent vector Â(p) at p ∈ P is equal to
d
dt [p · hA(t)]|t=0. Let g ∈ G be any fixed element. The right translation rg(p) = pg

on P determines canonically a transformation X 7→ (rg)∗X on vector fields: The

tangent vector of the transformed field at a point p is simply obtained by applying

the derivative of the mapping rg to the tangent vector X(pg−1).
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Proposition 4.2.7. For any A ∈ g the vector field Â is equivariant, that is,

(rg)∗Â = âd−1
g A∀g ∈ G.

Proof. Using a local trivialization,

Â(p) =
d

dt
(π(p), φ(petA))

∣∣∣∣
t=0

and therefore

((rg)∗Â)(p) = Tpg−1rg ·
d

dt
(π(pg−1), φ(pg−1etA))

∣∣∣∣
t=0

=
d

dt
(π(pg−1), φ(pg−1etAg))

∣∣∣∣
t=0

=
d

dt
(0, φ(petad

−1
g A))

∣∣∣∣
t=0

= âd−1
g A(p).

4.3. Connection and curvature in a principal bundle

Let E and M be a pair of manifolds, V a vector space and π : E →M a smooth

surjective map.

Definition 4.3.1. The manifold E is a vector bundle over M with fiber V , if

(1) Ex = π−1(x) is isomorphic with the vector space V for each x ∈M

(2) π : E → M is locally trivial: Any x ∈ M has an open neighborhood U

with a diffeomorphism φ : π−1(U)→ U × V , φ(z) = (π(z), ξ(z)), where the

restriction of ξ to a fiber Ex is a linear isomorphism onto V .

The product M × V is the trivial vector bundle over M , with fiber V . In this

case the projection map M ×V →M is simply the projection onto the first factor.

A direct sum of two vector bundles E and F over the same manifold M is the

bundle E ⊕ F with fiber Ex ⊕ Fx at a point x ∈ M. The tensor product bundle

E ⊗ F is the vector bundle with fiber Ex ⊗ Fx at x ∈M.

Example 4.3.2. The tangent bundle TM of a manifold M is a vector bundle

over M with fiber TxM ' Rn, where n = dimM . The local trivializations are given

by local coordinates: If (x1, x2, ..., xn) are local coordinates on U ⊂ M , then the
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value of ξ for a tangent vector w ∈ TxM , x ∈ M , is obtained by expanding w in

the basis defined by the vector fields (∂1, ..., ∂n).

A section of a vector bundle E is a map ψ : M → E such that π ◦ ψ = idM .

The space Γ(E) of sections of E is a linear vector space; the addition and multi-

plication by scalars is defined pointwise. A principal bundle may or may not have

global sections but a vector bundle always has nonzero sections. A section can be

multiplied by a smooth function f ∈ C∞(M) pointwise, (fψ)(x) = f(x)ψ(x).

Let (P, π,M) be a principal G bundle. The space V of vertical vectors in the

tangent bundle TP is the subbundle of TP with fiber {v ∈ TpP |π(v) = 0} at

p ∈ P . If P is trivial, P = M ×G, then the vertical subspace at p = (x, g) consists

of vectors tangential to G at g. In general, the dimension of the fiber Vp is equal

to dimG.

Definition 4.3.3. A connection in the principal bundle P is a smooth distribution

p 7→ Hp of subspaces of Tp such that

(1) The tangent space Tp is a direct sum of Vp and Hp ∀p ∈ P

(2) The distribution is equivariant, i.e., rgHp = Hpg ∀p ∈ P, g ∈ G.

Smoothness means that the distribution can be locally spanned by smooth vec-

tor fields. We shall denote by prh (respectively, prv) the projection in Tp to the

horizontal subspace Hp (respectively, vertical subspace Vp).

Let A ∈ g and let Â be the corresponding equivariant vector field on P . The

field Â is vertical at each point. Since the group G acts freely and transitively on

P , the mapping A 7→ Â(p) is a linear isomorphism onto Vp for all p ∈ P . Thus for

each X ∈ TpP there is a uniquely defined element ωp(X) ∈ g such that

ω̂p(X) = prvX

at p. The mapping ωp : TpP → g is linear, thus defining a differential form of

degree one on P , with values in the Lie algebra g. The form ω is the connection

form of the connection H.

Proposition 4.3.4. The connection form satisfies

(1) ωp(Â(p)) = A∀A ∈ g,

(2) r∗aω = adaω ∀a ∈ G.
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Furthermore, each g-valued differential form on P which satisfies the above condi-

tions is a connection form of a uniquely defined connection in P .

Proof. The first equation follows immediately from the definition of ω. To prove

the second, we first note that

̂(ad−1
a A)(p) =

d

dt
petad

−1
a A|t=0 =

d

dt
pa−1etAa|t=0 = raÂ(pa−1).

By the equivariantness property of the distribution Hp, the right translations ra

commute with the horizontal and vertical projection operators. Thus [we write (A)̂
for Â in case of long expressions]

(adaωp(X)) (̂p) = r−1
a · ω̂p(X)(pa)

= r−1
a (prvX)(pa) = prv(r−1

a X)(pa)

= (ωp(r−1
a X)) (̂pa).

Taking account that (r∗aω)p(X) = ωpa(raX) we get the second relation.

Let then ω be any form satisfying both equations. We define the horizontal

subspaces Hp = {X ∈ Tp|ωp(X) = 0}. If X ∈ Hp ∩ Vp, then X = Â(p) for some

A ∈ g and ωp(Â(p)) = A = ωp(X) = 0, from which follows Hp ∩ Vp = 0. By (1)

and a simple dimensional argument we get Tp = Hp + Vp. For X ∈ Hp and a ∈ G

we obtain

ωpa(raX) = (r∗aω)p(X) = adaωp(X) = 0,

and therefore raX ∈ Hpa, which shows that the distribution Hp is equivariant and

indeed defines a connection in P .

Let ω be a connection form in (P, π,M). Let U ⊂ M be open and ψ : U → P

a local section. The pull-back A = ψ∗ω is a one-form on U . Consider another

local section φ : V → P and set A′ = φ∗ω. We can write ψ(x) = φ(x)g(x) for

g : U ∩ V → G, where g(x) is a smooth G valued function. We want to relate A to

A′. Noting that

Txψ = rg(x)Txφ+ (g−1Txg) (̂φ(x))

by the Leibnitz rule, we get

Ax(u) = ωψ(x)(Txψ · u) = ωψ(x)(rg(x)Txφ · u+ (g−1Txg · u) (̂φ(x)))

= ad−1
g(x)ωφ(x)(Txφ · u) + g−1Txg · u.



57

For a matrix group G we can simply write

A = g−1A′g + g−1dg.

The transformation relating A to A′ is called a gauge transformation . Next we

define the two-form

(4.3.5) F = dA+
1
2

[A,A]

on U . The commutator of Lie algebra valued one-forms is defined by

[A,B](u, v) = [A(u), B(v)]− [A(v), B(u)]

for a pair u, v of tangent vectors. We shall compute the effect of a gauge transfor-

mation (U,ψ)→ (V, φ) on F :

F = dA+ 1
2 [A,A]

= g−1dA′g − [g−1dg, g−1A′g]− 1
2 [g−1dg, g−1dg]

+ 1
2 [g−1A′g + g−1dg, g−1A′g + g−1dg]

= g−1(dA′ + 1
2 [A′, A′])g = g−1F ′g.

The curvature form F is a pull-back under ψ of a gobally defined two-form Ω on

P . The latter is defined by

Ωp(u, v) = a−1Fx(πu, πv)a,

where p ∈ π−1(x), u, v tangent vectors at p and a ∈ G is an element such that

p = ψ(x)a. The left-hand side does not depend on the local section. Writing

p = φ(x)a′ = ψ(x)g(x)a′ we get

a′−1F ′x(πu, πv)a′ = a′−1g(x)−1Fx(πu, πv)g(x)a′ = a−1Fx(πu, πv)a.

Since A is the pull-back of ω and F is the pull-back of Ω we obtain from 4.3.5

(4.3.6) Ω = dω +
1
2

[ω, ω]

Exercise 4.3.7. Prove the Bianchi identity dF + [A,F ] = 0. (The 3-form [A,F ]

is defined by an antisymmetrization of [A(u), F (v, w)] with respect to the triplet

(u, v, w) of tangent vectors.)
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Let (P, π,M) be a principal G bundle and ρ : G→ AutV a linear representation

of G in a vector space V . We define the manifold P×GV to be the set of equivalence

classes P×V/ ∼, where the equivalence relation is defined by (p, v) ∼ (pg−1, ρ(g)v),

for g ∈ G. There is a natural projection θ : P ×G V → M , [(p, v)] 7→ π(p).

The inverse image θ−1(x) ∼= V , since G acts freely and transitively in the fibers

of P . The linear structure in a fiber θ−1(x) is defined by [(p, v)] + [(p, w)] =

[(p, v + w)], λ[(p, v)] = [(p, λv)]. Local trivializations of P ×G V are obtained from

local trivializations p 7→ (π(p), φ(p)) ∈ M × G of P by [(p, v)] 7→ (π(p), ρ(φ(p))v).

Thus P ×G V is a vector bundle over M , the vector bundle associated to P via the

representation ρ of G.

Example 4.3.8. Let P = SU(2),M = S2 = SU(2)/U(1), G = U(1), V = C

and ρ(λ) = λ2 for λ ∈ U(1). The associated vector bundle E = SU(2)×
U(1)

C is in

fact the tangent bundle of the sphere S2. The isomorphism is obtained as follows.

Fix a linear isomorphism of C ∼= R2 with the tangent space of S2 at the point x,

which has as its isotropy group the given U(1). The map E → TS2 is defined by

(g, v) 7→ D(g)v, where D(g) is the 2-1 representation of SU(2) in R3. The tangent

vectors of S2 are represented by vectors in R3 by the natural embedding S2 ⊂ R3.

4.4. Parallel transport

Let H be a connection in a principal G bundle (P, π,M). A horizontal lift of a

smooth curve γ(t) on the base manifold M is a smooth curve γ∗(t) on P such that

the tangent vector γ̇∗(t) is horizontal at each point on the curve and π(γ∗(t)) = γ(t).

Lemma 4.4.1. Let X(t) be a smooth curve on the Lie algebra g of G, defined on

an interval [t0, t1]. Then there exists a unique smooth curve a(t) on G such that

ȧ(t)a(t)−1 = X(t)∀t ∈ [t0, t1] and such that a(t0) = e.

Proof. See Kobayashi and Nomizu, vol. I, p. 69.

Proposition 4.4.2. Let γ(t) be a smooth curve on M and p an element in the

fiber over γ(t0). Then there exists a unique horizontal lift γ∗(t) of γ(t) such that

γ∗(t0) = p.

Proof. Choose first any (smooth) curve φ(t) on P such that π(φ) = γ and φ(t0) = p.



59

We are looking for the solution in the form γ∗(t) = φ(t)g(t), where g(t) is a curve

on G such that g(t0) = e. Now γ∗(t) is a solution if

γ̇∗(t) = rg(t) · φ̇(t) + (g(t)−1ġ(t)) [̂φ(t)g(t)]

is horizontal. Let ω be the connection form of the connection H. A tangent vector

on P is horizontal if and only if it is in the kernel of ω. We get the differential

equation

0 = ω(γ̇∗(t)) = ω(rg(t)φ̇(t)) + ω([g(t)−1ġ(t)] [̂φ(t)g(t)])

= ad−1
g(t)ω(φ̇(t)) + g(t)−1ġ(t).

Applying adg to this equation we get

ġ(t)g(t)−1 = −ω(φ̇(t)).

The solution g(t) exists and is unique by the previous lemma.

Example 4.4.3. Let P = M×U(1), M simply connected. A connection form ω

can be written as ω(x,g)(u, a) = Ax(u)+g−1 ·a, where u is a tangent vector at x ∈M

and a is a tangent vector at g ∈ U(1); the Lie algebra of U(1) is identified by the set

of purely imaginary complex numbers. Let γ(t) be a curve on M . The horizontal

lift of γ(t) which goes through (γ(t), g) at time t = 0 is γ∗(t) = (γ(t), g(t)) with

g(t) = g · exp
(∫ t

0

−Aγ(s)(γ̇(s))ds
)
.

In particular, for a closed contractible curve, γ(0) = γ(1), we get by Stokes’s theorem

g(1) = g · exp(−
∫
S

F ),

where F = dA is the curvature two-form and the integration is taken over any

surface on M bounded by the closed curve γ.

We define the parallel transport along a curve γ(t) on M as a mapping τ :

π−1(x0) → π−1(x1) (x0 = γ(t0), x1 = γ(t1) points on the curve). The value τ(p0)

for p0 ∈ π−1(x0) is given as follows: Let γ∗(t) be a horizontal lift of γ(t) such that

γ∗(t0) = p0. Then τ(p0) = γ∗(t1).

Exercise 4.4.4. Prove the following properties of the parallel transport.

(1) τ ◦ rg = rg ◦ τ∀g ∈ G
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(2) If γ1 is a path from x0 to x1 and γ2 is a path from x1 to x2 then the parallel

transport along the composed path γ2 ∗γ1 is equal to the product of parallel

transport along γ1 followed by a parallel transport along γ2.

(3) The parallel transport is a one-to-one mapping between the fibers π−1(x0)

and π−1(x1).

4.5. Covariant differentiation in vector bundles

Let E be a vector bundle over a manifold M with fiber V , dim V = n. The vector

space V is defined over the field K = R or K = C. A vector bundle can always be

thought of as an associated bundle to a principal bundle. Namely, let Px denote the

space of all linear frames in the fiber Ex for x ∈ M. Using the local trivializations

of E it is not difficult to see that the spaces Px fit together and form naturally a

smooth manifold P . Fix a basis w = {w1, . . . , wn} in Ex. Then any other basis of

Ex can be obtained from w by a linear tranformation w′i =
∑
Ajiwj and therefore

Px can be identified with the group GL(n,K) of all linear transformations in Kn; it

should be stressed that this identification depends on the choice of w. However, we

have a well-defined mapping P ×GL(n,K)→ P given by the basis transformations

and this shows that P can be thought of as a principal GL(n,K) bundle over M.

The vector bundle E is now isomorphic with the associated bundle P ×ρ Kn,

where ρ is the natural representation of GL(n,K) in Kn. The isomorphism is defined

as follows. Let w ∈ Px and a ∈ Kn. We set φ(w, a) =
∑
aiwi. This gives a

mapping from P × Kn to E which is obviously linear in a. For a fixed w the

mapping a 7→ φ(w, a) gives an isomorphism between Kn and Ex. Let w′ = w ·g and

a′ = ρ(g−1)a for some g ∈ GL(n,K). We have to show that φ(w′, a′) = φ(w, a);

but this follows immediately from the definitions.

Often the bundle E can be thought of as an associated bundle to a principal bun-

dle with a smaller structure group than the group

GL(n,K). This happens when there is some extra structure in E. For example,

assume there is a fiber metric in E: This means that there is an inner product

< ·, · >x in each fiber Ex such that x 7→< ψ(x), ψ(x) >x is a smooth function for

any (local) section ψ. We can then define the bundle of orthonormal frames in E
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with structure group U(n) in the complex case and O(n) in the real case. The

vector bundle E is now an associated bundle to the bundle of orthonormal frames.

We shall now assume that E is given as an associated vector bundle P ×ρ V to

some principal bundle P , with a connection H, over M. Let G be the structure

group of P. For each vector field X on M we can define a linear map ∇X of the

space Γ(E) of sections into itself such that

(1) ∇X+Y = ∇X +∇Y
(2) ∇fX = f∇X
(3) ∇X(fψ) = (Xf)ψ + f∇Xψ

for all vector fields X,Y , smooth functions f and sections ψ. We shall give the

definition in terms of a local trivialization ξ : U → P , where U ⊂ M is open.

Locally, a section ψ : M → E can be written as

ψ(x) = (ξ(x), φ(x)),

where φ : U → V is some smooth function. Let A denote the pull-back ξ∗ω of the

connection form ω in P . The representation ρ of G in V defines also an action of

the Lie algebra g in V . We set

∇Xψ = (ξ,Xφ+A(X)φ),

where A(X) is the Lie algebra valued function giving the value of the one-form A

in the direction of the vector field X.

We have to check that our definition does not depend on the choice of the local

trivialization. So let ξ′(x) = ξ(x) · g(x) be another local trivialization, where g :

U → G is a smooth function. The vector potential with respect to the trivialization

ξ′ is A′ = g−1Ag + g−1dg. Now (ξ, φ) ∼ (ξ′, φ′), where φ′ = g−1φ (we simplify the

notation by dropping ρ) and therefore (ξ′, Xφ′ +A′(X)φ′) is equal to

(ξ′,−g−1(Xg)g−1φ+ g−1Xφ+ (g−1Ag + g−1Xg)g−1φ)

= (ξ′, g−1(Xφ+A(X)φ)) ∼ (ξ,Xφ+A(X)φ)

which shows that ∇X is well-defined.

Exercise 4.5.1. Prove that ∇X defined above satisfies (1)-(3).
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The commutator of the covariant derivatives ∇X is related to the curvature of

the connection in the following way:

[∇X ,∇Y ]ψ = (ξ, [X +A(X), Y +A(Y )]φ)

= (ξ, ([X,Y ] +X ·A(Y )− Y ·A(X) + [A(X), A(Y )])φ)

= (ξ, (F (X,Y ) + [X,Y ] +A([X,Y ]))φ)

where F = dA+ 1
2 [A,A]. Thus we can write

[∇X ,∇Y ]−∇[X,Y ] = F (X,Y )

when acting on the functions φ.

A section ψ is covariantly constant if ∇Xψ = 0 for all vector fields. From the

above commutator formula we conclude that one can find at each point in the base

space a local basis of covariantly constant sections of the vector bundle if and only

if the curvature vanishes.

4.6. An example: The monopole line bundle

Construction of the basic monopole bundle

Let G be a Lie group and g its Lie algebra. Let us denote by `g the left translation

`g(a) = ga in G. The left invariant Maurer-Cartan form θL = g−1dg is the g-valued

one form on G which sends a tangent vector X at g ∈ G to the element `−1
g X ∈ TeG

in the Lie algebra. Similarly, we can define the right invariant Maurer-Cartan form

θR = dgg−1, θR(g;X) = r−1
g X. By taking commutators, we can define higher

order forms. For example, the form [g−1dg, g−1dg] sends the pair (X,Y ) of tangent

vectors at g to 2[`−1
g X, `−1

g Y ] ∈ g.

Taking projections to one dimensional subspaces of g we get real valued one-

forms on G.

Let < ·, · > be a bilinear form on g and σ ∈ g. Then α =< σ, g−1dg > is a

well-defined one form. Let us compute the exterior derivative of α. Let X,Y be a

pair of left invariant vector fields on G. Now

dα(g;X,Y ) = X · α(Y )− Y · α(X)− α([X,Y ])

= −α([X,Y ])
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since α(Y )(g) =< σ, `−1
g Y > is a constant function on G and similarly for α(X).

Since the left invariant vector fields on a Lie group span the tangent space at each

point, we conclude

dα = − < σ, 1
2 [g−1dg, g−1dg] > .

We have not yet defined the exterior derivative of a Lie algebra valued differential

form, but motivated by the computation above we set

d(g−1dg) = −1
2

[g−1dg, g−1dg].

A bilinear form < ·, · > on g is invariant if

< [X,Y ], Z >= − < Y, [X,Z] >

for all X, Y, and Z. Given an invariant bilinear form, the group G has a natural

closed three-form c3 which is defined by

c3(g;X,Y, Z) =< `−1
g X, [`−1

g Y, `−1
g Z] > .

Thus

c3 =< g−1dg, 1
2 [g−1dg, g−1dg] > .

Proposition 4.6.1. dc3 = 0.

Proof.. Recall the definition of the exterior differentiation d: If ω is a n-form and

V1, ..., Vn+1 are vector fields, then

dω(V1, ..., Vn+1) =
n+1∑
i=1

(−1)i+1Vi · ω(V1, ..., V̂i, ..., Vn+1)

+
∑
i<j

(−1)i+jω([Vi, Vj ], V1, ..., V̂i, ..., V̂j , ..., Vn+1),

where the caret means that the corresponding variable has been dropped. Let

us compute dc3 for left invariant vector fields X1, ..., X4. Taking account that

c3(Xi, Xj , Xk) is a constant function we get

dc3(X1, ...X4) =− 2 < [X1, X2], [X3, X4] > +2 < [X1, X3], [X2, X4] >

− 2 < [X1, X4], [X2, X3] >

=2 < X1, [[X3, X4], X2]− [[X2, X4], X3] + [[X2, X3], X4] >

=0
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by Jacobi’s identity.

If G is a group of matrices we can define an invariant form on g by < X,Y >=

trXY. Then the form c3 can be written as

c3 = tr (g−1dg)3.

As an example we shall consider in detail the case G = SU(2). Let σ3 =(
i 0

0 −i

)
and define the one-form α = − 1

2 trσ3g
−1dg. Remember that SU(2) →

SU(2)/U(1) = S2 is a principal U(1) bundle. The form α is invariant with respect

to right translations g 7→ gh by h ∈ U(1). Thus α is a connection form in the bundle

SU(2) [the Lie algebra of the structure group U(1) can be identified with iR]. Let

us compute the curvature. The exterior derivative of α is 1
4 trσ3[g−1dg, g−1dg].

A tangent vector at x ∈ S2 can be represented by a tangent vector `gX at g ∈

π−1(x) , X ∈ g, such that X is orthogonal to the U(1) direction, trσ3X = 0.

The curvature in the base space S2 is then Ω(X,Y ) = 1
2 trσ3[X,Y ]. The form

Ω is 1
2× the volume form on S2: If {X,Y} is an ortonormal system at x ∈ S2,

then [X,Y ] = ± i
2σ3 (exercise), the sign depending on the orientation. We obtain

Ω(X,Y ) = ± i
4 trσ2

3 = ± i
2 .

The basic monopole line bundle is defined as the associated bundle to the bundle

SU(2)→ S2, constructed using the natural one dimensional representation of U(1)

in C.

Embedding S2 ⊂ R3 and using Cartesian coordinates {x1, x2, x3} we can write

the curvature form as

Ω =
1

4r3
εijkxidxj ∧ dxk,

where r2 = x2
1 + x2

2 + x2
3 is equal to 1 on S2. However, we can extend Ω to the

space R3 \{0} using the above formula. The coefficients of the linearly independent

forms dx2 ∧ dx3, dx3 ∧ dx1 and dx1 ∧ dx2 form a vector ~B = 1
2r3 (x1, x2, x3) = ~x

r3 .

The field ~B satisfies

(1) ~∇ · ~B = 0

(2) ~∇× ~B = 0,
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i.e., it satisfies Maxwell’s equations in vacuum. On the other hand,

(3)
∫
S2

~B · d~S = 2π

for any sphere containing the origin. Because of these properties, the field ~B can

be interpreted as the magnetic field of a magnetic monopole located at the origin.

The integral (3) multiplied by the dimensional constant 1/e (e is the unit electric

charge) is called the monopole strength.

The first Chern class

The magnetic field of the monopole is the curvature of a circle bundle over the

unit sphere S2. The circle bundle we have constructed is a ”generator” for the

set of all circle bundles over S2. In general, a principal U(1) bundle over S2 can

be constructed from the transition function ξ : S− ∩ S+ → U(1) (cf. 3.2.3). The

intersection of the coordinate neighborhoods S± is homeomorphic with the product

of an open interval with the circle S1. It follows that the set of maps ξ decomposes

to connected components labelled by the winding number of a map S1 → U(1).

Let ξ1 be the transition function of the bundle SU(2) → S2 with respect to some

fixed local trivializations on S±. The winding number of ξ1 is equal to one. The

winding number of ξn = (ξ1)n is equal to n. Let P (n) be the bundle constructed

from ξn. Let A± be the vector potentials on S± corresponding to the chosen local

trivializations and the connection in SU(2) described above.

We have A+ = A− + ξ−1dξ on S− ∩ S+ and therefore nA+ = nA− + ξ−1
n dξn.

Thus nA is a connection in the bundle P (n) and the curvature of P (n) is n times

the curvature form Ω of the (basic) monopole bundle. The monopole strength of

the bundle P (n) is 2πn/e.

The cohomology class [Ω] ∈ H2(S2,R) is the first Chern class of the bundle.

It depends only on the equivalence class of the bundle and not on the chosen

connection; we shall return to the proof of the topological invariance of the Chern

classes in a more general context later, but as an illustration of the general ideas

we give a simple proof for the case at hand. Let B± be the vector potentials on S±

of some connection in the bundle P (n). We have B+ = B−+nξ−1dξ and therefore

A+−B+ = A−−B− on S+∩S−. It follows that A−B is a globally defined one-form
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on S2; the difference of the curvatures corresponding to the connections A and B

is equal to d(A−B).

The first Chern class of a circle bundle (or an associated complex line bundle)

over a manifold M can be evaluated from the knowledge of the U(1) valued tran-

sition functions [R. Bott and L.W. Tu: Differential forms in algebraic topology].

In the example above we needed only one transition function ξ. A representative

Ω for the Chern class can be constructed from a vector potential (A+, A−) such

that A− = 0 for x3 <
1
2 , A+ is equal to ξ−1dξ on the strip − 1

2 < x3 <
1
2 , and A+

is contracted smoothly to zero when approaching the north pole x3 = 1. The first

Chern class is always quantized in the sense that the integral of the two-form Ω

over any two-dimensional compact surface is 2π times an integer.

4.7. Chern classes

We shall consider polynomials P (A) of a complex N × N matrix variable A

which are invariant in the sense that P (gAg−1) = P (A) for all g ∈ GL(N,C). For

example, if we expand

(4.7.1) det
(

1 +
λ

2πi
A

)
=

N∑
n=0

λnPn(A)

then the coefficients Pn(A) are homogeneous invariant polynomials of degree n in

A. These polynomials will play a special role in the following discussion.

To each homogeneous polynomial P (A) one can associate a unique symmetric

multilinear form P (A1, . . . An) such that P (A, . . . , A) = P (A). The general formula

for the n linear form in terms of P (A) is

P (A1, . . . , An) =
1
n!
{P (A1 + · · ·+An)

−
∑
j

P (A1 + · · ·+ Âj + · · ·+An)

+
∑
j<j′

P (A1 + . . . Âj + . . . Âj′ · · ·+An)− . . . },

with Âj deleted. When P (A) is invariant we clearly have P (gA1g
−1, . . . , gAng

−1) =
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P (A1, . . . , An). Writing g = g(t) = exp(tX) we get the useful formula

0 =
d

dt
P (g(t)A1g(t)−1, . . . , g(t)Ang(t)−1)|t=0

=
∑
j

P (A1, . . . , [X,Aj ], . . . , An).(4.7.2)

If Fi is a N ×N matrix valued differential form of degree ki on a manifold M ,

1 ≤ i ≤ n, and P a symmetric n linear form then we can define a complex valued

differential form P (F1, . . . , Fn) of degree k1 + · · ·+ kn = p by

P (F1, . . . , Fn)(t1, . . . , tp) =(∏ 1
ki!

)∑
σ

ε(σ)P (F1(tσ(1), . . . , tσ(k1)), . . . , Fn(tσ(p−kn+1), . . . , tσ(p)))

where the sum is taken over all permutations of the indices 1, 2, . . . , p.

Let F be the curvature form of a vector bundle E over M with fiber CN . The cur-

vature transforms in a change of a local trivialization as F 7→ gFg−1 and therefore

P (F, . . . , F ) is well-defined, independent of the local trivialization, for any invariant

symmetric polynomial P.

Proposition 4.7.3. The symmetric homogeneous polynomial P (F,

. . . , F ) of degree n in the curvature F is a closed form of degree 2n.

Proof. Locally we can write Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. Using the property

d(α ∧ β) = dα ∧ β + (−1)degαα ∧ dβ of differential forms we have

dP (F, . . . , F ) =
∑
j

P (F, . . . , dF, . . . , F )

=
∑
j

{P (F, . . . ,DF, . . . , F )− P (F, . . . , [A,F ], . . . , F )}.(4.7.4)

The covariant derivative DF = 0 by the Bianchi identity and the sum of the terms

involving [A,F ] is zero by (4.7.2).

In particular, the class in H2n(M,R) defined by the closed 2n form Re Pn(F ) is

called the nth Chern class of the bundle E and is denoted by cn(E).

Theorem 4.7.5. The Chern classes are topological invariants: They do not depend

on the choice of connection in the vector bundle E.

Proof. Let A0 and A1 be two connections in E and F0, F1 the corresponding curva-

tures. Define a one-parameter family At = A0 +tη of connections with η = A1−A0;
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note that the difference η transforms homogeneously in a change of local trivializa-

tion, η 7→ gηg−1. Let us introduce the notation Q(A,B) = nP (A,B, . . . , B) when

B is repeated n− 1 times. Using

Ft = dAt +
1
2

[At, At] = F0 + tDη +
1
2
t2[η, η],

where D is the covariant derivative determined by A0, we get

(4.7.6)
d

dt
P (Ft) = Q

(
d

dt
Ft, Ft

)
= Q (Dη,Ft) + tQ([η, η], Ft).

On the other hand,

dQ(η, Ft) =Q(dη, Ft)− n(n− 1)P (η, dFt, Ft, . . . , Ft)
(4.7.7)

=Q(dη, Ft)− n(n− 1)P (η, dFt, Ft, . . . , Ft)

+ nP ([A0, η], Ft, . . . , Ft)− n(n− 1)P (η, [A0, Ft], . . . , Ft)

=Q(Dη,Ft)− n(n− 1)P (η,DFt, Ft, . . . , Ft)

=Q(Dη,Ft) + tn(n− 1)P (η, [η, Ft], Ft, . . . , Ft)

where we have used DFt = DF0 + tD2η+ t2[Dη, η] = t[F0, η] + t2[Dη, η] = t[Ft, η],

since [[η, η], η] = 0 by Jacobi identity. By (4.7.2) we have

P ([η, η], Ft, . . . , Ft)− (n− 1)P (η, [η, Ft], Ft, . . . , Ft) = 0

or in other words,

Q([η, η], Ft)− n(n− 1)P (η, [η, Ft], Ft, . . . , Ft) = 0.

Using (4.7.7) we get

dQ(η, Ft) = Q(Dη,Ft) + tQ([η, η], Ft)

and with (4.7.6) we obtain

(4.7.8)
d

dt
P (Ft) = dQ(η, Ft).

Integrating this result over the interval 0 ≤ t ≤ 1 we get

P (F1)− P (F0) = d

∫ 1

0

Q(η, Ft)dt
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which shows explicitly that the difference of the differential forms P (F1) and P (F0)

is an exact form.

Given a Hermitian inner product in the fibers of the vector bundle E it is always

possible to choose a Hermitian connection, that is, a connection such that in an

orthonormal basis the vector potential takes values in the Lie algebra of the uni-

tary group U(N). In that case the determinant det(1 + λ
2πiF ) is real for any real

parameter λ and the Chern classes are given by the expansion in powers of λ; the

first two positive powers lead to

c1(F ) =
1

2πi
trF

c2(F ) =
1

2(2πi)2
[−trF 2 + (trF )2].

The coefficients in the expansion can be best computed by diagonalizing the matrix

F. Writing F = diag(α1, . . . , αN ) one obtains

det
(

1 +
λ

2πi
F

)
=
∏
k

(
1 +

λαk
2πi

)
=
∑
n

(
λ

2πi

)n
Sn(α)

with

S0 = 1, S1 = trα, S2 =
1
2

(trα)2 − 1
2

trα2

S3 =
1
6

(trα)3 − 1
2

trα2 trα+
1
3

trα3

etc. Note that cn vanishes identically if n > 1
2dimM or n > N. If n = 1

2dimM

then we can integrate the form cn(E) over M and the value of the integral is called

the Chern number associated to the vector bundle E.

Example 4.7.9. Consider a vector bundle E over M = S4 such that the

transition functions take values in the group SU(N), N ≥ 2. Dividing S4 to the

upper and lower hemispheres S4
± the bundle is given by the transition function φ

along the equator S3. The vector potentials A± are then related by A− = φA+φ
−1−

dφφ−1 on the equator. Using the formula trF 2 = dtr (F ∧A− 1
3A

3) we can compute
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the Chern number corresponding to the second Chern class,

1
8π2

∫
S4

+

trF 2
+ +

1
8π2

∫
S4
−

trF 2
−

=
1

8π2

∫
S3

[
tr (F+ ∧A+ − 1

3A
3
+)− tr (F− ∧A− − 1

3A
3
−)
]

=
1

8π2

∫
S3

[
tr 1

3 (dφφ−1)3 − dtr (A+ ∧ dφφ−1)
]

=
1

24π2

∫
S3

tr (dφφ−1)3.

Remark 4.7.10. The value of the integral above is an integer which depends

only on the homotopy class of the map φ : S3 → SU(N). This follows from the fact

that the form tr (dgg−1)3 on any Lie group is closed (section 4.6) and from Stokes’

theorem applied to the integral
∫ 1

0
dt ddt

∫
S3 tr (dφtφt−1)3 for a 1-parameter family

of maps φt;S3 → SU(N).

Since the equivalence class of the bundle E depends only on the homotopy class

of the transition function φ, the Chern number
∫
c2(E) gives a complete topological

characterization of E.

The Chern character ch(E) of a vector bundle is defined as follows. It is a formal

sum of differential forms of different degrees,

ch(E) = tr exp
(

1
2πi

F

)
,

where again F is the curvature form of E. When the exponential is evaluated as a

power series we obtain

ch(E) =
∞∑
k=0

1
(2πi)kk!

trF k.

Clearly all the terms can be expressed using the Chern classes; the three first terms

are

ch(E) = N + c1(E) +
1
2
c1(E) ∧ c1(E)− c2(E) + . . . .

The Chern character is a convenient tool because one has

ch(E ⊕ E′) = ch(E) + ch(E′) ch(E ⊗ E′) = ch(E) · ch(E′).

This follows immediately from the definition and the elementary properties of the

exponential function.
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Above we have studied characteristic classes of complex vector bundles. The

most important characteristic classes for real vector bundles are the Pontrjagin

classes and they are constructed as follows.

Let π : E → M be a real vector bundle over the manifold M. We can always

think a real vector bundle as an associated vector bundle to a principal bundle P

with structure group GL(n,R). We fix a metric in the fibers of E, so it makes sense

to speak about orthonormal frames in the fibers. This means that we can consider

E as an associated bundle to a principal O(n) bundle; the principal bundle is simply

the bundle of orthonormal frames.

Thus we are led to studying connections in principal O(n) bundles. A connection

form takes values in the Lie algebra of O(n), that is, in the Lie algebra of real

antisymmetric n× n matrices.

If we choose a local section of the principal O(n) bundle then the curvature

form F is a local matrix form on the base space M and in gauge transformations

F ′ = g−1Fg.

A real antisymmetric matrix can be brought to the canonical form

T−1FT =


0 λ1 0 . . . 0
−λ1 0 0 . . . 0

0 0 0 λ2 . . . 0
0 0 −λ2 0 . . . 0

. . . . . . . . .
. . . . . . . . .

 .

When n = 2k is even the matrix consist of k antisymmetric 2× 2 matrices on the

diagonal; when n = 2k + 1 then the last column and the last row consists of only

zeros. The eigenvalues of the matrix are ±iλj .

We define

p(F ) = det
(

1 +
F

2π

)
=

k∏
i=1

(
1 +

λ2
i

4π2

)
.

Clearly p(F ) = p(−F ) so that p is a polynomial of even degree in the curvature

tensor F. We write

p(F ) = 1 + p1(F ) + p2(F ) + . . .

as a sum of homogeneous terms pj(F ) of degree 2j in the curvature. Since F is a

2-form, pj(F ) is a differential form on M of degree 4j.
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Note that pj(F ) depends only on the eigenvalues of Fµν and therefore it is

invariant with respect to gauge transformations and thus gives a globally well-

defined form on M.

Exactly as in the case of Chern classes we expand each pj in powers of the

curvature tensor F. The lowest Pontrjagin classes are

p1(F ) = −1
2

(
1

2π
)2trF 2

p2(F ) =
∑
i<j

(
λi
2π

)2(
λj
2π

)2 =
1
2

[
(
∑
i

λ2
i

(2π)2
)2 −

∑
i

(
λi
2π

)4

]

=
1
8

(
1

2π
)4
[
(trF 2)2 − 2trF 4

]
p3(F ) =

∑
i<j<k

(
λi
2π

)2(
λj
2π

)2(
λk
2π

)2 = . . .

=
1
48

(
1

2π
)6
[
−(trF 2)3 + 6trF 2 · trF 4 − 8trF 6

]
.

We shall meet later another set of characteristic classes, called the A-roof genus,

which are actually formed from the Pontrjagin classes. The definition is best set

up in terms of eigenvalues of the matrix form F,

Â(F ) =
∏
j

xj/2
sinh(xj/2)

=
∏
j

(
1 +

∑
`

(−1)`
22` − 2
(2`)!

B` x
2`
j

)
,

where B` are the Bernoulli numbers and xj = λj/2π. In terms of Ponrjagin classes,

Â(F ) = 1− 1
24
p1 +

1
5760

(7p2
1 − 4p2) +

1
967680

(−31p3
1 + 44p1p2 − 16p3) + . . . .

Further reading: Nakahara, Chapters 9-11. The proof above of the topological

invariance of the Chern classes follows S.S. Chern: Complex Manifolds without

Potential Theory. Princeton University Press (1979). On characteristic classes see

also: J.W. Milnor and J.D. Stasheff: Characteristic Classes. Princeton University

Press (1974).


