
CHAPTER 3: RIEMANN GEOMETRY

3.1 Affine connection

According to the definition, a vector field X ∈ D1(M) determines a derivation of the
algebra of smooth real valued functions on M . This action is linear in X such that
(fX)g = f(Xg) for any pair f, g of smooth functions. Next, we want to define an action
of X on D1(M) itself, which has similar properties. Let ∇X : D1(M) → D1(M) for any
X ∈ D1(M) be an operator satisfying the following conditions:

(1) The map Y 7→ ∇XY is real linear in Y for any fixed X,
(2) ∇fX+gY Z = f∇XZ + g∇Y Z for any vector fields X,Y, Z and any smooth real

valued functions f, g, and
(3) ∇X(fY ) = f∇XY +Y (X ·f) for any vector fields X,Y and any smooth real valued

function f .
An operator ∇ satisfying these conditions is called an affine connection on the manifold

M .

Example 1 Let M = Rn and define

∇XY = (X · Y j)
∂

∂xj
.

Then, ∇ is an affine connection.

Warning! The above example needs a modification when applied to an arbitrary

manifold M . The difficulty is that the right-hand side depends on the choice of local

coordinates and it does not transform like a true vector. If we transform to coordinates

yj = yj(x1, . . . , xn), then in the new coordinates

(1) Y ′j(y) =
∂yj

∂xi
Y i(x)

and therefore

(2) (X · Y ′j)∂′j = (X · Y i)
∂yj

∂xi
∂′j + Yi

(
X · ∂yj

∂xi

)
∂′j .

The coordinates of the first term on the right-hand side are equal to ∂yj

∂xi (∇XY )i, but for

any non-linear coordinate transformation we also have a second inhomogeneous term.

Choosing local coordinates, the difference

(3) H i(X,Y ) = (∇XY )i −X · Y i

is linear in both arguments in the extended sense

(4) H i(fX, gY ) = fgH i(X,Y ),

for any smooth functions f and g. For this reason, we can write

(5) H i(X,Y ) = ΓijkX
jY k.

27



28

Here Γijk = Γijk(x) are smooth (local) functions on M . Once again,

(6) (∇XY )i = X · Y i + ΓijkX
jY k.

The functions Γijk are called the Christoffel symbols of the affine connection ∇. Let us

look what happens to the Christoffel symbols in a coordinate transformation y = y(x).

Let us denote by ∇i the covariant derivative ∇ ∂

∂xi
. Then,

(7) ∇i∂j = Γkij∂k.

Denoting ∂′i = ∂
∂yi , we get

∇′i∂′j = Γ′kij∂
′
k =

∂xa

∂yi
∇a
(
∂xb

∂yj
∂b

)
=

∂xa

∂yi

[
∂xb

∂yj
∇a∂b + ∂a

(
∂xb

∂yj

)
∂b

]
=

∂xa

∂yi
∂xb

∂yj
Γcab∂c +

∂2xb

∂yi∂yj
∂b.(8)

Transforming back to the x coordinates on the left-hand side, we finally get

(9) Γ′kij(y) =
∂xa

∂yi
∂xb

∂yj
∂yk

∂xc
Γcab(x) +

∂yk

∂xc
∂2xc

∂yi∂yj
.

Note that in linear coordinate transformations, the inhomogeneous term containing second

derivatives vanishes and the Christoffel symbols transform like components of a third rank

tensor.

Exercise 1 We define the Christoffel symbols on the unit sphere, using spherical coor-

dinates (θ, φ). When θ 6= 0, π, we set

Γθφφ = −1
2

sin 2θ, Γφθφ = Γφφθ = cot θ,

and all the other Γ’s are equal to zero. Show that the apparent singularity at θ = 0, π can

be removed by a better choice of coordinates at the poles of the sphere. Thus, the above

affine connection extends to the whole S2.

3.2 Parallel Transport

The tangent vectors at a point p ∈M form a vector space TpM. Thus, tangent vectors

at the same point can be added. However, at different points p and q, there is in general

no way to compare the tangent vectors u ∈ TpM and v ∈ TqM . In particular, the sum

u+ v is ill-defined. An affine connection gives a method to relate tangent vectors at p to

tangent vectors at q, provided that we have fixed some smooth curve γ(t) starting from p

and ending at q.
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A curve γ defines a distribution of tangent vectors along the curve by

(10) X(s) = ẋi(s)∂i.

We have chosen a local coordinate system xi. Thus, X(s) ∈ Tγ(s)M . Consider the system

of first order ordinary differential equations given by

(11) Ẏ i(s) + Γikj(x(s))ẋk(s)Y j(s) = 0, i = 1, 2, . . . , n.

Here Y (s) is an unknown vector field along the curve x(s).

Exercise 2 Show that the set of equations (11) is coordinate independent in the sense

that if the equations are valid in one coordinate system, then they are also valid in any

other coordinate system.

A vector field Y along the curve x(s) satisfying Eq. (11) is called a parallel vector field.

The existence and uniqueness theorem in the theory of first order differential equations

gives the following fundamental theorem in geometry:

Theorem 3.1. Given a tangent vector v ∈ TpM at the initial point p = γ(s0) of a smooth

curve γ(s) then there is a unique parallel vector field Y (s) along γ(s) satisfying the initial

condition Y (s0) = v.

Definition 3.2. A curve γ(s) is a geodesic if its tangent vectors γ̇(s) at each point are

parallel.

Thus, the statement γ(s) is a geodesic means that the coordinate functions xi(s) satisfy

(12) ẍi(s) + Γijk(x(s))ẋj(s)ẋk(s) = 0.

This condition is a second order ordinary differential equation for the coordinate functions.

We can use existence and uniqueness results from the theory of differential equations:

Theorem 3.3. For given point p ∈ M and a tangent vector u ∈ TpM there is, in some

open neighborhood of p, a unique geodesic γ(s) such that γ(0) = p and γ̇(0) = u.

Example 2 Let M = S2 and let Γ be the affine connection in Exercise 1. Then, the

coordinates θ(s) and φ(s) of a geodesic satisfy

θ̈(s)− 1
2

sin 2θ(s) φ̇(s)φ̇(s) = 0,

φ̈(s) + 2 cot θ(s) φ̇(s)θ̇(s) = 0.

Find the general solution to the geodesic equations. The solutions are great circles on the

sphere. For example, θ = αs+ β and φ = const.
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Let∇ be a connection on M and γ(s) a curve connecting points p = γ(s1) and q = γ(s2).

We define the parallel transport from the point p to the point q along the curve γ as a

linear map

γ̂ : TpM → TqM.

The map is given as follows: Let u ∈ TpM and let X(s) be a parallel vector field along γ

such that X(s1) = u. We set γ̂(u) = X(s2). The map is linear, because the differential

equation

(13) Ẋi(s) + Γikj ẋk(s)X
j(s) = 0

is linear in Xi and therefore the solution depends linearly on the initial condition u.

Example 3 If M = Rn and Γijk = 0, then the parallel transport γ̂ is the identity map

u 7→ u for any curve γ.

Example 4 Let M and Γ be as in Example 2. Let (θ, φ) = (αs + β, φ0). Now, the

parallel transport is determined by the equations

Ẋθ = 0,

Ẋφ + cot θ · θ̇Xφ = Ẋφ +Xφα cot(αs+ β) = 0.

This set has the solution Xθ = const. and Xφ = const. · (sin(αs + β))−1. If u is the

tangent vector (1, 1) at the point (θ, φ) = (π/4, 0), then the parallel transported vector v

at (θ, φ) = (π/2, 0) is (1, 1/
√

2).

3.3 Torsion and Curvature

Given an affine connection ∇ on a manifold M we can define a third rank tensor field

T = (T kij) as follows. Any pair of vector fields X and Y gives another vector field

(14) T (X,Y ) = ∇XY −∇YX − [X,Y ].

The dependence on X and Y is linear, after choosing local coordinates, we may write

(15) T (X,Y )i = XjY kT ijk,

which defines the components T ijk of the tensor. Note that T (X,Y ) is linear in the extended

sense,

T (fX, Y ) = T (X, fY ) = fT (X,Y ), T (X,Y + Z) = T (X,Y ) + T (X,Z)

for any real function f . Note further that T (X,Y ) = −T (Y,X). Since

(16) T (∂i, ∂j)k = Γkij − Γkji,
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we see that T is precisely the antisymmetric part (in the lower indices) of the Christoffel

symbols.

From Eq. (16) and the transformation formula (11) for the Christoffel symbols follows

that the components of the torsion T really transform like tensor components in coordinate

transformations,

(17) T ′
i
jk(y) =

∂yi

∂xp
∂x`

∂yj
∂xm

∂yk
T p`m(x).

Next, we define the curvature tensor R. For a triple X,Y, Z of vector fields, we can

define a vector field

(18) R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z.

In local coordinates,

(19) R(∂i, ∂j)∂k = Rmkij∂m.

From the definition (18), we get

Rmkij∂m = ∇i∇j∂k −∇j∇i∂k

= ∇i(Γmjk∂m)−∇j(Γmik∂m)

= ∂iΓmjk∂m + ΓmjkΓ
p
im∂p − ∂jΓ

m
ik∂m − ΓmikΓ

p
jm∂p,(20)

i.e.,

(21) Rmkij = ∂iΓmjk − ∂jΓmik + ΓpjkΓ
m
ip − ΓpikΓ

m
jp.

For fixed i and j, we may think of R••ij as a real n× n matrix. With this notation,

(22) R••ij = ∂iΓ•j• − ∂jΓ•i• + [Γ•i•,Γ
•
j•] =

[
∂i + Γ•i•, ∂j + Γ•j•

]
.

The curvature is antisymmetric in i and j,

(23) Rmkij = −Rmkji.

Using Eq. (21), one checks by a direct computation that in a coordinate transformation

y = y(x),

(24) R′
m
kij(y) =

∂ym

∂xq
∂xr

∂yk
∂xs

∂yi
∂xp

∂yj
Rqrsp(x).

Thus, Rmkij is really a 4th rank tensor in contrast to the Christoffel symbols Γkij , which

transform inhomogeneously in coordinate transformations.

Exercise 3 Check that

T ′
k
ij(y) =

∂yk

∂xm
∂xr

∂yi
∂xs

∂yj
Tmrs (x)

in a coordinate transformation y = y(x).
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Assume that the torsion T vanishes. From Eq. (21), we deduce the first Bianchi identity

(25) Rmkij +Rmjki +Rmijk = 0

for all indices. This can also be written as

(26) R(X,Y )Z +R(Z,X)Y +R(Y, Z)X = 0

for all vector fields X,Y, Z. This identity is in general not true when T 6= 0.

Another important tensor in general relativity is the Ricci tensor

(27) Rij = Rkikj .

Exercise 4 Show that Rij transforms like a second rank tensor in coordinate transfor-

mations.

The curvature is related to the parallel transport in the following way. Consider a

very small parallelogram with edges at x, x + δx, x + δx + δy, x + δy. According to the

differential equation (11), determining a parallel transport, a tangent vector Y at x when

parallel transported to the point x+δx becomes approximately (in given local coordinates)

(28) Y i(x+ δx) = Y i(x)− Γijk(x)Y k(x)δxj .

At the next point x+ δx+ δy, we get

Y i(x+ δx+ δy) = Y i(x)− Γijk(x)Y k(x)δxj

− Γijk(x+ δx)[Y k(x)− Γk`m(x)Y m(x)δxj ]δy`

= Y i(x)− Γijk(x)Y k(x)δxj − Γijk(x)Y k(x)δyj

− ∂mΓijk(x)δxmδyjY k(x)

+ Γijk(x)Γk`m(x)Y m(x)δx`δyj .(29)

In the same way, we can compute the parallel transport of Y from x to x+ δy and further

to x + δy + δx. The parallel transport around the parallelogram is then obtained as a

combination of the right-hand side of the above formula and the latter transport (note the

direction of motion!); the result is

δY i = Rikmj(x)Y k(x)δxmδyj

=
1
2
Rikmj(x)Y k(x)(δxmδyj − δxjδym).(30)

Thus, the parallel transport around the small parallelogram is proportional to the curva-

ture at x and the area of the parallelogram.

Example 5 We compute the curvature tensor of the unit sphere S2. Since there are

only two independent coordinates, all the non-zero components of R are given by the



33

tensor Rij = Rijθφ = −Rijφθ, where i, j = θ, φ. Looking at the table (Exercise ) of the

Christoffel symbols, we get

Rθφ = sin2 θ, Rφθ = −1,

and the other components = 0.

The second Bianchi identity

(31) ∂iR
•
•jk + [Γ•i•, R

•
•jk] + ∂jR

•
•ki + [Γ•j•, R

•
•ki] + ∂kR

•
•ij + [Γ•k•, R

•
•ij ] = 0

follows from Eq. (22) and the Jacobi identity for matrices,

(32) [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

3.4 Metric and Pseudo-Metric

In order to define distances and inner products between tangent vectors on a manifold

M , we have to define a metric. A Riemannian metric is an inner product defined in each

of the tangent spaces. That is, for each p ∈M , we have a non-degenerate bilinear mapping

gp : TpM × TpM → R,

which is symmetric, gp(u, v) = gp(v, u) for all tangent vectors u, v ∈ TpM , and gp(u, u) > 0

for all u 6= 0, and it depends smoothly on the coordinates of the point p. Choosing local

coordinates xi and writing the tangent vectors in the coordinate basis, u = ui∂i, we can

write a symmetric bilinear mapping as a second rank symmetric tensor,

(33) gp(u, v) = giju
ivj .

Non-degenerate means that det(gij) 6= 0. Since (gij) is symmetric, it can be diagonalized.

Positivity of the inner product means then that all eigenvalues of g are positive.

In relativity, we need a generalization of the Riemann metric to a pseudo-Riemannian

metric. In this generalization, we shall drop the requirement that the inner product is

positive. In particular, we want to include the Minkowski space metric (ηµν), which has

signature (1, 3), it has one positive eigenvalue (= 1) and three negative eigenvalues (= −1).

A metric (or a pseudo-metric) can be used to define distances. If γ(s) is a parametrized

curve such that its tangent vector at each point on the curve has non-negative length,

then we define the length of the curve (between the parameter values a and b) as

`(γ) =
∫ b

a

√
gγ(s)(γ̇(s), γ̇(s)) ds.
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The extremal curves γ(t) for the functional `(γ) are the geodetic curves for a certain

connection (the Levi-Civita connection, see the discussion below and the exercise 2.15).

Recall the Euler-Lagrange variational equations: Let x(t) = (x1(t), x2(t), . . . , xn(t)) be a

vector valued function of a real variable t and

S(x(·)) =
∫ b

a
L(x(t), x′(t), x′′(t), . . . )dt

where L is some (differentiable) function of the derivatives x, x′, x′′, . . . . Then the derivative

of S in the direction δx(t) of a variation of the curve x(t) is

δS =
∑
i

∫ b

a
δxi(t)

{
∂L

∂xi
− d

dt

∂L

∂xi′
+ (

d

dt
)2
∂L

∂xi′′
− . . .

}
dt,

where we have used partial integration in the variable t in order to factor out δx under

the integral sign. The requirement that the variation δS vanishes in arbitrary directions

δx in the path space is then equivalent to the Euler-Lagrange equations

∂L

∂xi
− d

dt

∂L

∂xi′
+ (

d

dt
)2
∂L

∂xi′′
− · · · = 0,

where i = 1, 2, . . . n.

Example 6 If M = Rn, then we can define a constant metric gij = δij . This is the

standard Euclidean metric. In general in Rn, a Riemannian metric is given by smooth real

functions gij(x) = gji(x) such that the matrix (gij(x)) is strictly positive for all x ∈ Rn.

Example 7 If M ⊂ Rn is any smooth surface in the Euclidean space, then we can

define a metric g as follows. Let u, v ∈ TpM be a pair of tangent vectors to the surface at

the point p. The tangent vectors are also vectors in Rn, thus we may compute the scalar

product u · v. We set gp(u, v) = u · v. From the fact that the Euclidean metric is positive

definite follows at once that g is a positive symmetric form.

Example 8 Let M = S2 ⊂ R3. We compute the metric g on M , as defined in Example

7, in terms of the spherical coordinates θ and φ. The spherical coordinates are related to

the standard coordinates by

∂θ = cos θ cosφ
∂

∂x
+ cos θ sinφ

∂

∂y
− sin θ

∂

∂z
,

∂φ = − sin θ sinφ
∂

∂x
+ sin θ cosφ

∂

∂y
.

¿From this we obtain the inner products

gθθ = g(∂θ, ∂θ) = 1,

gφφ = g(∂φ, ∂φ) = sin2 θ,

gθφ = gφθ = 0.
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For example, the inner product of vectors (1, 2) and (2,−1) (in the θ and φ coordinates)

is 1 · 2 · gθθ + 2 · (−1) · gφφ = 2 − 2 sin2 θ, at the point (θ, φ). Note that the spherical

coordinates are orthogonal, the off-diagonal matrix elements of g are equal to zero.

According to the last example, the distance between to points on a sphere along a curve

γ(t) = (θ(t), φ(t)) is given by

`(γ) =
∫ b

a
[θ′(t)2 + sin2 θ(t)φ′(t)2]1/2dt.

The Euler-Lagrange equations give then (check this!)

θ′′(t)− 1
2
φ′2 sin θ(t) = 0(34)

d

dt
[φ′(t) sin2 θ(t)] = 0(35)

which agrees with the equations in example 2.

Suppose a (pseudo) metric g is given on a manifold M . From the metric, we can

construct a preferred affine connection, called the Levi-Civita connection. Its Christoffel

symbols (in given local coordinates) are given by the formula

(36) Γkij =
1
2
gk`(∂igj` + ∂jgi` − ∂`gij),

where gij are the matrix elements of the inverse matrix g−1.

One should always be extremely careful when trying to define something with the help

of local coordinates. It is not a priori clear that the locally defined Christoffel symbols

in various coordinate systems match together to define a connection on whole manifold

M . To investigate the patching problem, we compute what happens in a coordinate

transformation y = y(x). Since

(37)
∂

∂yi
=
∂xk

∂yi
∂

∂xk
,

we get

g′ij(y) = gy

(
∂

∂yi
,
∂

∂yj

)
=
∂xk

∂yi
∂x`

∂yj
gx

(
∂

∂xk
,
∂

∂x`

)
= gk`(x)

∂xk

∂yi
∂x`

∂yj
.(38)

Inserting this transformation law into the definition (36) of Christoffel symbols, we get

(39) Γ′kij(y) =
∂yk

∂xc
∂xa

∂yi
∂xb

∂yj
Γcab +

∂yk

∂xc
∂2xc

∂yi∂yj
,

as expected. Thus, the Christoffel symbols defined in different coordinate systems are

compatible and define indeed an affine connection.

Example 9 Since the standard Euclidean metric is constant in the standard coordi-

nates, the Christoffel symbols of the Levi-Civita connection vanish.
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Example 10 The Christoffel symbols computed from the metric defined in Example

agree with the Christoffel symbols of Exercise .

The Levi-Civita connection has two characteristic properties. The first property is that

its torsion T = 0, since Γkij − Γkji = 0 according to Eq. (36). The second property is that

the parallel transport defined by the Levi-Civita connection is metric compatible in the

following sense: Let X(s) and Y (s) be a pair of parallel vector fields along a curve γ(s).

Then,

(40)
d

ds
gγ(s)(X(s), Y (s)) = 0,

i.e., the inner products of parallel vector fields are constant along the curve. This means

that the parallel transport γ̂ : TpM → TqM between the end points of the curve is an

isometry.

Theorem 3.4. An affine connection ∇ is compatible with a metric g if and only if

Z · g(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY )

for all vector fields X,Y, Z.

A word about the notation: We write g(X,Y ) for the real valued smooth function

p 7→ gp(X(p), Y (p)). Remember that a vector field acts on functions as derivations, so the

left-hand side is a well-defined smooth function, too.

Proof 1) Assume that the condition for g in the theorem is satisfied. Let X(s) and

Y (s) be a pair of parallel vector fields along a curve γ(s). We shall extend X and Y to

vector fields defined in an open neighborhood of the curve. Let Z be some vector field

defined in a neighborhood of the curve such that along the curve Z(γ(s)) = γ̇(s). Since

X and Y are parallel along γ, we have

∇ZX = ∇ZY = 0 on the curve γ.

Thus,
d

ds
gγ(s)(X(s), Y (s)) = Z · g(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY ) = 0 on γ.

2) Assume that ∇ is compatible with g. Let X,Y, Z be a triple of vector fields. Let

p ∈M and γ any curve through p such that at p, γ̇(s1) = Z(p). Define vector fields along

γ by X(s) = X(γ(s)) and Y (s) = Y (γ(s)).

Let X1, . . . , Xn be an orthonormal basis of tangent vectors at p. We define a set of

parallel vector fields Xi(s) along γ such that at p = γ(s1), we have Xi(s1) = Xi. Any pair

of vector fields along γ can then be written as

X(s) = αi(s)Xi(s), Y (s) = βi(s)Xi(s).
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Now, we have

d

ds
gγ(s)(X(s), Y (s)) =

d

ds
αi(s)βj(s)gγ(s)(Xi(s), Xj(s))

=
d

ds
αi(s)βi(s) = α̇i(s)βi(s) + αi(s)β̇i(s)

= gγ(s)(α̇
i(s)Xi(s), βj(s)Xj(s))

+ gγ(s)(α
i(s)Xi(s), β̇j(s)Xj(s))

= gγ(s)(∇γ̇X(s), Y (s)) + gγ(s)(X(s),∇γ̇Y (s)).

Applying this formula to the vector field Z at p, Z(p) = γ̇(s1), we get the condition of the

theorem at (the arbitrary point) p.

Theorem 3.5. For a given metric, the Levi-Civita connection is the unique torsion free

metric compatible connection.

Proof. Use the equation in Theorem 3.4 for coordinate vector fields X,Y, Z = ∂i, ∂j , ∂k

and the symmetry Γkij = Γkji of a torsion free connection.

Theorem 3.6. A geodesic of the Levi-Civita connection gives an extremal for the path

length between two points. If the points are close enough, then the extremal gives the

minimum length.

Proof. Compare the differential equations obtained from the Euler-Lagrange variational

principle, applied to curve length, with the differential equations of a geodesic, for the Levi-

Civita connection. Note that the Euler-Lagrange equations obtained from the variation of

the curve length are the same as obtained from variation of the integral (without square

root!) ∫ b

a
gx(t)(ẋ(t), ẋ(t))dt.

APPENDIX: The Einstein Field Equations

The Einstein tensor is defined as

(41) Gµν = Rµν −
1
2
gµνR,
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where R = gµνRµν is the Ricci scalar. We assume that the metric gµν is pseudo-

Riemannian of signature (1, 3) (one positive direction and three negative directions). The

connection is the Levi-Civita connection computed from the metric and Rµν = Rλµλν is

the Ricci tensor.

Exercise Writing Rαβµν = gαλR
λ
βµν , show that

Rαβµν = −Rβαµν = −Rαβνµ = Rµναβ .

Show that this implies that Rµν is symmetric.

The Einstein tensor is symmetric. Furthermore, its covariant divergence vanishes,

(42) ∇µGµν = ∂µG
µν + ΓµµαG

αν + ΓνµαG
µα = 0.

This is seen as follows. First, taking Z = ∂α, X = ∂µ, Y = ∂ν in Theorem 3.4, we obtain

(43) ∂αgµν = Γβαµgβν + Γβανgµβ = Γανµ + Γαµν .

This can be also written as

(44) (∇αg)µν = 0.

For the inverse tensor gµν = (g−1)µν , one gets

(45) ∂αg
µν + Γναβg

µβ + Γµαβg
βν = 0.

Note the difference in sign for the covariant derivative of the metric tensor and its inverse.

Exercise For any vector field X = Xµ∂µ the components of the covariant derivatives

are (∇νX)µ = ∂νX
µ + ΓµναXα. Show that the covariant divergence is given by

(∇µX)µ = (−det g)−1/2∂µ((−det g)1/2Xµ).

In relativity theory literature, it is a custom to use the abbreviation Xµ;ν = (∇νX)µ

for the covariant differentiation of vector (and higher order tensor) indices. With this

notation, we can write the second Bianchi identity as

(46) Rαβµν;λ +Rαβνλ;µ +Rαβλµ;ν = 0.

Contracting the α and µ indices in this identity with the metric tensor, we get

(47) gαµ(Rαβµν;λ +Rαβνλ;µ +Rαβλµ;ν) = 0.

By the definition of the Ricci tensor, this can be written as

(48) Rβν;λ +Rµβνλ;µ −Rβλ;ν = 0,

where we have taken into account that the covariant derivative of gµν vanishes, implying

that the multiplication with the components of the metric tensor commutes with covariant
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differentiation; in particular, index raising and lowering commutes with covariant deriva-

tives. Using the results of Exercise , we get

(49) gαµRαβλµ;ν = −gαµRαβµλ;ν = −Rβλ;ν .

Contracting Eq. (48) once again with gβν , we get

(50) gβν(Rβν;λ +Rµβνλ;µ −Rβλ;ν) = 0,

or in other words,

(51) R ;λ −Rµλ;µ −R
ν
λ;ν = 0.

Note that since R is a scalar, R;µ = ∂µR. An equivalent form of the previous equation is

(52)
(
2Rµλ − δ

µ
λR
)
;µ

= 0.

Raising the index λ and dividing by 2 finally leads to

(53)
(
Rµν − 1

2
gµνR

)
;µ

= 0.

Einstein’s gravitational field equations are written simply as

(54) Gµν = 8π
G

c4
Tµν ,

where G on the right-hand side (not to be confused with Einstein’s tensor!) is New-

ton’s gravitational constant and Tµν is the stress-energy (energy-momentum) tensor. It

describes the distribution of matter and energy in space-time. For example, the electro-

magnetic field gives a contribution to Tµν defined by TEMµν = ε0F
λ
µ Fλν + ε0

4 gµνF
λωFλω.

Another example is the energy-momentum tensor of a perfect fluid .A perfect fluid is

characterized by a 4-velocity field u, a scalar density field ρ0 and a scalar pressure field p.

The energy-momentum tensor is defines as

Tµν = (ρ0 + p)uµuν − pgµν .

A special case of this is p = 0 which can be viewed as the energy momentum tensor of

a flow of noninteracting dust particles. Normally p and ρ0 are not independent but they

are related by the equation of state of the form p = p(ρ0, T ), where T is the temperature.

The requirement that the covariant divergence of the energy-momentum tensor vanishes

leads to equations of motion for the perfect fluid. In fact, in case of Minkowski space-time

and in a certain limit one gets the classical Navier-Stokes equations (from ∂µTµk = 0 for

k = 1, 2, 3),

ρ

[
∂u
∂t

+ (u · ∇)u
]

= −∇p

and the continuity equation (from ∂µTµ0 = 0),

∂ρ

∂t
+∇ · (ρu) = 0.



40

Here ρ = ρ0(1− u2).

Let S be some space-like surface with a time-like unit normal vector field nµ, n0 > 0.

Then, ∫
S

(−det g)1/2Tµνnν d3x

gives the energy and momentum contained in S. Equation (42) leads to the following

conservation law of energy and momentum. Suppose that the metric gαβ does not depend

on a particular coordinate xµ. Then,

(55) 0 = ∂µgαβ = Γµβα + Γµαβ = Γαβµ + Γβαµ.

Thus, Γαβµ is antisymmetric in the first two indices. Now,

(56) (∇νT )νµ = ∂νT
ν
µ + ΓννλT

λ
µ − ΓλνµT

ν
λ.

The third term on the right-hand side is equal to −ΓνλµT νλ and it vanishes because

the second factor is symmetric in its indices, whereas the first factor is antisymmetric

in λ and ν by the remark above. On the other hand, the sum of the first two terms

is (−g)−1/2∂ν [(−g)1/2T νµ], according to the result of Exercise . Thus, for fixed µ, jν =

(−g)1/2T νµ is conserved in the usual sense,

(57) ∂νj
ν = 0.

In order to avoid convergence problems with the infinite integrals, we assume that all

energy and momentum are contained in a compact region K in space-time. Consider a

surface S, consisting of two space-like components S1 and S2 and some surface S3 ‘far

away’ such that T vanishes on S3. Using Gauss’ law and the current conservation, we

conclude that the surface integral of (−det g)1/2T νµnν over S vanishes. In other words,

(58)
∫
S1

(−det g)1/2T νµnν d
3x =

∫
S2

(−det g)1/2T νµnν d
3x.

We have taken into account that, since n is future pointing, one of the normal vector fields

on S1 and S2 is outward directed and the second inward directed. Equation (58) tells us

that the stress-energy, in the µ-direction, on S1 is the same as the corresponding quantity

on S2; one could think of Si as a fixed time slice at time ti and one obtains the usual law

of conservation of energy or momentum.

Often one uses units in which G = 1 and c = 1 so that one does not need to write

explicitly the coefficient G/c4 in Einstein’s equations.

4. The Newtonian Limit

It is known that the Newtonian gravitational theory is valid for fields, which can produce

only velocities much smaller than the velocity of light. Since the components T 0i and T ij
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are related to spatial momenta and T 00 is related to energy, this condition says that |T 00|

is much larger than the other components. Because of Einstein’s equations, the same is

true for the components of the Einstein tensor. Furthermore, we expect that for weak

gravitational fields the metric gµν differs slightly from the Minkowski metric ηµν ,

(59) gµν = ηµν + hµν

for a small perturbation hµν . Next, we compute the connection, curvature, and finally

the Ricci tensor to first order in the perturbation hµν . A straight-forward computation,

starting from the definitions of the various tensors, gives Gµν = −1
2�(hµν− 1

2η
µνh), where

h = ηµνh
µν . Thus, Einstein’s equations, in this approximation, are linear,

(60) −1
2
�

(
hµν − 1

2
ηµνh

)
= 8π

G

c4
Tµν .

Taking into account the remark in the beginning of this section, only the 00-component is

relevant,

(61) �

(
h00 − 1

2
h

)
= −16π

G

c2
ρ,

where ρ = T 00/c2 is the matter density in the rest system of the source. We can also drop

the time derivatives (in the system of coordinates, where the source is slowly moving,

because ∂0 = 1
c∂t) and so the only relevant equation becomes

(62) ∇2

(
h00 − 1

2
h

)
= 16π

G

c2
ρ.

This means that,

(63) h00 − 1
2
h =

4
c2
φ,

where φ is the gravitational potential for the matter distribution ρ. (Compare Eq. (62)

with the Newtonian equation ∇2φ = 4πGρ, where φ = −GM/r!)

Since all the other components of hµν − 1
2η

µνh vanish at this order of approximation,

we finally get

(64) hµµ =
2
c2
φ = −2GM

c2r
(no summation!)

for all µ = 0, 1, 2, 3.

Next, we shall compute the geodesics for the metric gµν = ηµν + hµν in the linear

approximation (we neglect higher order terms in hµν). For small velocities, the time

component ẋ0(s) of the 4-velocity is much larger than the spatial components. For this

reason, we can approximate the geodesic equations of motion as

(65)
d2xµ

ds2
+ Γµ00

(
dx0

ds

)2

= 0.
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In the linear approximation,

(66) Γ0
00 = ∂0φ, Γi00 = ∂iφ.

Thus, the geodesic equations become

(67) ẍ0 + ∂0φ(ẋ0)2 = 0, ẍi + ∂iφ(ẋ0)2 = 0.

In the coordinate system, where the source is at rest, the first equation says that we can

choose the time t as the geodesic parameter, x0(s) = s = ct, and then the second equation

becomes

(68) ẍi = −∂iφ.

The right-hand side (after multiplication by the mass m of the test particle) is the gravi-

tational force of the source on m, so this equation is just Newton’s second law, ma = F,

where F = −∇Φ and Φ = mφ.

5. The Schwarzschild Metric

The basic problem in Newtonian celestial mechanics is to solve the equations of motions

outside of a spherically symmetric mass distribution (orbits of the planets around the Sun,

orbits of satellites around the Earth). In general relativity the first natural problem is to

search for spherically symmetric solutions of Einstein’s equations.

Actually, there is a unique 1-parameter family of spherically symmetric solutions, which

are asymptotically flat, meaning that at large distances from the source the metric tends

to the flat Minkowski metric ds2 = dx2
0−dx2

1−dx2
2−dx2

3. This is the content of Birkhoff’s

theorem (which we are not going to prove). The line element of the metric is given as

(69) ds2 =
(

1− 2GM
c2r

)
dx2

0 −
(

1− 2GM
c2r

)−1

dr2 − r2dΩ2,

where dΩ2 is the angular part of the Euclidean metric in R3, dΩ2 = dθ2 + sin2 θ dφ2. It is

clear from Eq. (69) that for large distances r the metric approaches the Minkowski metric.

The line element (69) is called the Schwarzschild metric.

When r > 2GM/c2 the Schwarzschild metric is supposed to describe the gravitational

field outside of a spherically symmetric star. The other disconnect region r < 2GM/c2

is the Schwarzschild black hole. The singularity at r = 2GM/c2 is actually due to a bad

choice of coordinates. There is a way to glue the inside solution in a smooth way to

the outside solution by a suitable choice of coordinates; the complete discussion of this

was first given by Kruskal and Szekeres in 1960. The Kruskal–Szekeres metric is given

as follows. The coordinates are denoted by (u, v, θ, φ). The latter two are the ordinary
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spherical coordinates on a unit sphere. The coordinates (u, v) are restricted to the region

L ⊂ R2 defined by

uv <
2GM
c2e

.

The metric is then

(70) ds2 =
16µ2

r
e(2µ−r)/2µdudv − r2dΩ2,

where µ = MG/c2 and r is a function of u, v defined by

(71) uv = (2µ− r)e(r−2µ)/2µ.

Note that f(x) = xex/a is monotonically increasing when x > −a (and f(x) > −a/e) and

therefore y = f(x) has a unique solution x for any y > −a/e. We treat u as a kind of

universal time; a time-like vector is future directed if its projection to ∂u is positive. The

orientation (needed in integration!) is defined by the ordering (v, u, θ, φ) of coordinates.

Note that the radial null lines (radial light rays) are given by du = 0 or dv = 0.

The Kruskal–Szekeres space-time can be divided into four regions: K1 consists of points

v > 0, u < 0, region K2 of points u, v > 0, in region K3 we have u, v < 0, and finally

region K4 is characterized by u > 0, v < 0. The boundaries between these regions are

non-singular points for the metric. The only singularities are at the boundary uv = 2µ/e.

The region K1 is equivalent with the outer region of a Schwarzschild space-time. This

is seen by performing the coordinate transformation (v, u, θ, φ) 7→ (t, r, θ, φ), where r =

r(u, v) as above and the Schwarzschild time is t = 2µ ln(−v/u). With a similar coordinate

transformation the regionK3 is seen to be equivalent with the outer Schwarzschild solution.

The region K2 is equivalent with the Schwarzschild black hole. The equivalence is obtained

through the coordinate transformation (v, u, θ, φ) 7→ (t, r, θ, φ), where r = r(u, v) is the

same as before but now t = 2µ ln(v/u).

It is easy to construct smooth time-like curves which go from either K1 or K3 to the

black hole K2. However, we shall prove that once an observer falls to the black hole there

is no way to go back to the ‘normal’ regions K1 and K3.

Let x(t) be the time-like path of the observer. Then along the path

dr

dt
=
∂r

∂u

du

dt
+
∂r

∂v

dv

dt
=

r

8µ2
e(r−2µ)/2µ

[
∂r

∂u
g(∂v, x′(t)) +

∂r

∂v
g(∂u, x′(t))

]
< 0,

since x(t) is time-like and in K2 holds r ∂r∂u = −2µve(2µ−r)/2µ < 0 and similarly for the

v-coordinate.

The boundary between K2 and the normal regions is r = 2µ (i.e., u = 0 or v = 0).

The function r(x(t)) was seen to be decreasing, and therefore the path x(t) can never hit

the boundary r = 2µ. But the observer entering K2 has a deplorable future, since it will
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eventually hit the true singularity r = 0, again using the monotonicity of the function

r(x(t)).

There is also another singularity, the outer boundary of region K3. But this is of no

great concern because it is in the past; no future directed time-like curve can enter that

singularity.


