Malliavin calculus, exercises 3, 23.02.2011

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(G) \in L^{2}(P)$, when $G(\omega)$ is gaussian with $E_{P}(G)=0$ and $E_{P}\left(G^{2}\right)=1$.
Here f does not need to be differentiable in any sense.

- Show that the function

$$
T f(t):=E_{P}(f(G+t))=\int_{\mathbb{R}} f(x+t) \gamma(x) d x
$$

is classically differentiable infinitely many times with respect to x.

Hint:

$$
\frac{1}{\varepsilon} \int_{\mathbb{R}}(f(x+t+\varepsilon)-f(x)) \gamma(x) d x=\frac{1}{\varepsilon} \int_{\mathbb{R}} f(x+t)(\gamma(x-\varepsilon)-\gamma(x)) d x
$$

A sufficient condition for

$$
\frac{d}{d t} \int \psi(x, t) \mu(d x)=\int \frac{d}{d t} \psi(x, t) \mu(d x)
$$

at $t=t_{0}$ is that for all t in a neighbourhood of t_{0}

$$
\left|\frac{d}{d t} \psi(x, t)\right| \leq \rho(x)
$$

for some dominating function $\rho \in L^{1}(\mu)$ (this follows by Lebesgue dominating convergence theorem, see Williams probability and martingales, A16).
Find a dominating function.

- Compute the derivatives. Hint: remember the Hermite polymomials !
- Compute the Taylor expansion of $T f(t)$ around $t_{0}=0$.
- Compute the likelihood ratio $Z(G, t)=\frac{d Q}{d P}$ of a change of measure such that under $Q G(\omega)$ is a gaussian variable with $E_{Q}(G)=t \mathrm{ja}$ $E_{Q}\left(G^{2}\right)=1$, and show that

$$
E_{P}(f(G+t))=E_{Q}(f(G))=E_{P}(f(G) Z(G, t))
$$

- Deduce that in the Taylor expansion of $T f(t)$ around $t_{0}=0$ we can interchange the order expectation and summation.
Hint: remember the expansion for the generating function

$$
Z(x, t)=\exp \left(t x-\frac{1}{2} t^{2}\right)
$$

2. Let $\left(G_{t}: t \in \mathbb{N}\right)$ a sequence of independent gaussian martingales. $H_{n}(x)$ denotes the n-th (un-normalized) Hermite polynomial.

- Show that

$$
M_{t}=\sum_{s=1}^{t} H_{n}\left(G_{s}\right)
$$

are martingales in the filtration $\left\{\mathcal{F}_{s}: s \in \mathbb{N}\right\}$ generated by the sequence. where $\mathcal{F}_{s}=\sigma\left(G_{1}, \ldots, G_{s}\right)$.

- Show that

$$
Z_{t}=\exp \left(\theta \sum_{s=1}^{t} G_{s}-\frac{1}{2} \theta^{2} t\right)
$$

is a $\left\{\mathcal{F}_{s}:\right\}$-martingale.

