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Gaussian integration by parts

Lemma

Let G (ω) a real valued gaussian random variable with
E (G ) = 0 and variance E (G 2) = σ2, If f , h are smooth
functions, such that f , h, f ′, h′ ∈ L2(R, γ)

E (f ′(G )h(G )) = E

(
f (G )

(
h(G )G

E (G 2)
− h′(G )

))
(0.1)
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Proof

P(G ∈ dx) = γ(x)dx with density

γ(x) =
1√
2πσ2

exp

(
− x2

2σ2

)
.

Note that

d

dx
γ(x) = −γ(x)x

σ2

Integrating by parts∫ ∞
−∞

f ′(x)h(x)γ(x)dx = −
∫ ∞
−∞

f (x)
d

dx

(
h(x)γ(x)

)
dx

=

∫ ∞
−∞

f (x)

(
h(x)x

σ2
− h′(x)

)
γ(x)dx �
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Denote

∂f (x) := f ′(x) and ∂∗h(x) :=

(
h(x)x

σ2
− h′(x)

)

Then

(∂f , h)L2(R,γ) = (f , ∂∗h)L2(R,γ)

∂∗ is the adjoint of the derivative operator in L2(R, γ).

De�nition

We say that f ∈ L2(R, γ), has weak derivative g ∈ L2(R, γ) in
Sobolev sense if ∀h with classical derivative h′ such that
∂∗h ∈ L2(γ),∫

R
g(x)h(x)γ(x)dx =

∫
R
f (x)∂∗h(x)γ(x)dx

and we denote ∂f = f ′ := g.
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This de�nition extends the classical derivative. We introduce
the weighted Sobolev space

W 1,2(R, γ) := { f ∈ L2 : f Sobolev di�erentiable }

with norm

‖ f ‖2W 1,2(γ)=‖ f ‖2L2(γ) + ‖ ∂f ‖2L2(γ)
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Proposition

The set of smooth functions with derivatives of polynomial
growth is dense in W 1,2(γ)

Proposition

The gaussian integration by parts formula

EP(∂f (G )h(G )) = EP(f (G )∂∗h(G ))

extends to f ∈ W 1,2(R, γ) h ∈ Domain(∂∗).

Corollary

For h(x) ≡ 1, f ∈ W 1,2(R, γ)

E (f ′(G )) =
E (f (G )G )

E (G 2)
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Linear regression

Let X (ω),Y (ω) ∈ L2(P) . Then

X̂ (ω) = b̂ + âY (ω) with (0.2)

â =
E (X (Y − E (Y )))

E (Y 2)− E (Y )2
(0.3)

b̂ = E (X )− b̂E (Y ) (0.4)

is the L2-projection of X on the linear subspace generated by
Y , such that

E ((X̂ − X )2) = min
a,b∈R

E

(
(a + bY − X )2

)
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In general X̂ (ω) 6= E (X |σ(Y ))(ω), which is the projection of
X on the subspace L2(Ω, σ(Y ),P).

When (X ,Y ) is jointly gaussian, X̂ = E (X |σ(Y )).
Let G ∼ N (0, σ2) and consider F = f (G ) for some non-linear
function f ∈ W 1,2(R, γ). By 0.2 the best linear estimator of
f (G ) given G is

f̂ (G ) = E (f (G )) +
E (f (G )G )

E (G 2)
G

= E (f (G )) + E (f ′(G ))G by 0.1

We have

f (G ) = EP(f (G )|σ(G )) = E (f (G )) + E (f ′(G ))G + M f (0.5)
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Clearly E (M f ) = 0, but also

E (M fG ) = E

({
f (G )− E (f (G ))− E (f ′(G ))G

}
G

)
= E

({
f (G )− E (f (G ))− E (f (G )G )

E (G 2)
G

}
G

)
= 0

The linearization error M f is uncorrelated with G .
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Lemma

Assume that f ′, f ′′ are bounded and continuous. Then

E ((M f )2)

σ2
→ 0 as σ → 0

Proof. Let G (ω) ∼ N (0, 1), obviously σG (ω) ∼ N (0, σ2)

f (σG ) = f (0) + f ′(0)σG +
1

2
f ′′(Xσ)σ2G 2

with Xσ → 0 a.s. as σ → 0
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E

({
E (f (σG )) + E (f ′(σG ))σG − f (σG )

}2)
=

Var

(
{ f ′(0)− E (f ′(σG ))}σG +

1

2
f ′′(Xσ)σ2G 2

)
= { f ′(0)− E (f ′(σG ))}2σ2 +

σ4

4
Var(f ′′(Xσ)G 2)

+{ f ′(0)− E (f ′(σG ))}σ3E (f ′′(Xσ)G 3)

Divide by σ2 and let σ → 0. Since the derivatives are bounded
and continuos, the result follows by Lebesgue dominated
convergence �
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Let ∆W1, . . . ,∆Wn i.i.d. Gaussian with E (∆W1) = 0
E (∆W 2

1
) = σ2. These are consecutive increments of the

random walk Wm =
∑m

k=1
∆Wk .

Let

F (ω) = f (∆W1(ω), . . . ,∆Wn(ω))

with f (x1, . . . , xn) ∈ W 1,2(Rn, γ⊗n).
Let Fk = σ(∆W1, . . . ,∆Wk)

Lemma

We have the martingale representation

F = E (F ) +
n∑

k=1

E (∂k f (∆W1, . . . ,∆Wn)|Fk−1)∆Wk + Mn

where M is a (Fk)-martingale with M0 = 0 and 〈M,W 〉 = 0.
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By induction it is enough to show that

E (F |Fk) =

E (F |Fk−1) + E (∂k f (∆W1, . . . ,∆Wn)|Fk−1)∆Wk + ∆Mk

with

E (∆Mk |Fk−1) = 0, E (∆Wk∆Mk |Fk−1) = 0 (0.6)

Let's �x k and consider the enlarged σ-algebra

Gk−1 = σ(∆W1, . . . ,∆Wk−1,∆Wk+1, . . .∆Wn) ⊇ Fk−1
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By �xing (∆Wi , i 6= k) applying 0.5 to the k-the coordinate
∆Wk

F = E (F |Gk−1) + E (∂k(∆W1, . . .∆Wk)|Gk−1)∆Wk + ∆M̃k

By the indepedence of the increments

f (∆W1, . . .∆Wn)

= E

(
f (x1, . . . , xk−1,∆Wk , xk+1, . . . xn)

)∣∣∣∣
xi =∆Wi , i 6=k

+E

(
∂k f (x1, . . . , xk−1,∆Wk , xk+1, . . . xn)

)∣∣∣∣
xi =∆Wi , i 6=k

∆Wk

+∆M̃k

with

E (∆M̃k |Gk−1) = 0, E (∆M̃k∆Wk |Gk−1) = 0,

which implies

E (∆M̃k |Fk−1) = 0, E (∆M̃k∆Wk |Fk−1) = 0.
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By taking conditional expectation w.r.t. Fk and using
independence of increments

E (F |Fk) =

E

(
f (x1, . . . , xk−1,∆Wk ,∆Wk+1, . . .∆Wn)

)∣∣∣∣
xi =∆Wi , i<k

+

E

(
∂k f (x1, . . . , xk−1,∆Wk ,∆Wk+1, . . .∆Wn)

)∣∣∣∣
xi =∆Wi , i<k

∆Wk

+∆Mk

where

∆Mk := E (∆M̃k |Fk)

with

E (∆Mk |Fk−1) = E (∆Mk∆Wk |Fk−1) = 0 �
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Assuming that the derivatives ∂k f , ∂
2

k f are bounded and
continuous, by Jensen inequality and lemma 2

σ−2E ((∆Mk)2|Fk−1) ≤ σ−2E ((∆M̃k)2|Fk−1)→ 0

P a.s. as σ → 0, and by dominated convegence

σ−2E ((∆Mk)2) ≤ σ−2E ((∆M̃k)2)→ 0
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De�nition

The (�nite-dimensional) Malliavin derivative is the random
gradient

DF := ∇f (∆W1, . . . ,∆Wn) ∈ Rn
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Brownian motion, (Wt : t ∈ [0,T ]) is a gaussian process with
W0 = 0 and such that for every n, 0 = t0 ≤ t1 ≤ · · · ≤ tn = T
the increments (Wti −Wti−1) are independent and gaussian
with variances (ti − ti−1).
We will show that there is realization of Brownian motion as a
random continuous function.
Suppose that we have a random variable F (ω) which is
measurable with respect to the σ-algebra
FW
t = σ(Ws : 0 ≤ s ≤ t), and that this can be approximated

by random variables of the form

Fn(ω) := fn
(
W

t
(n)
1

−W
t

(n)
0

, . . . ,W
t

(n)
n
−W

t
(n)
n−1

)
with smooth fn and t

(n)
k := Tk/n.
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Under some regularity assumptions as n→∞ the orthogonal
linearization error in

Fn = E (Fn) +
n∑

k=1

E (∇kFn|F (n)
k−1)∆W

(n)
k + Mn

n

vanishes (in L2(P) sense ) and the limit is the Clark-Ocone
martingale representation

F = E (F ) +

∫ T

0

E (DsF |FW
s )dWs

where the Ito integral appears.
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Skorokhod integral

In L2(Rn, γ⊗n(x)dx) the Malliavin derivative of
F = f (∆W1, . . . ,∆Wn) as the random gradient
DF = ∇f (∆W1, . . . ,∆Wn), where ∆Wk are i.i.d. N (0,∆t)
Let uk = uk(∆W1, . . . ,∆Wn) for k = 1, . . . , n.
Introduce the scalar product

〈u, v〉 := ∆t
n∑

k=1

ukvk
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We give the n-dimensional generalization of the 1-dimensional
integration by parts formula.
We need a random variable which we denote by δ(u) (the
Skorokhod integral or divergence integral ) such that

E (〈DF , u〉) = E (F δ(u))

for all smooth random variables F .
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Rewrite the left hand side

∆t
n∑

k=1

E
(
uk(∆W1, . . . ,∆Wn)∂k f (∆W1, . . . ,∆Wn)

)
by independence and the 1-dimensional gaussian integration by
parts

= ∆t
n∑

k=1

E (∂∗kuk(∆W1, . . . ,∆Wn)f (∆W1, . . . ,∆Wn))

= E

(
F∆t

( n∑
k=1

uk∆Wk

∆t
−

n∑
k=1

∂kuk

))

so that

δ(u) =
n∑

k=1

uk∆Wk −
n∑

k=1

Dkuk∆t

The �rst term is a Riemann sum, while the second term is
called Malliavin trace.
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When uk = uk(∆W1, . . . ,∆Wk−1,∆Wk+1, . . . ,∆Wn) does
not depend on ∆Wk , the Malliavin trace vanishes.

For F ≡ 1, DF ≡ 0 and when exists δ(u) ∈ L2(Ω), necessarily

E (δ(u)) = E (〈u, 0〉) = 0

In the continuous time case the Skorokhod integral is given by

δ(u) :=

∫ T

0

usδWs =

∫ T

0

usdWs −
∫ T

0

Dsusds

where
∫ T
0
usdWs is a backward integral de�ned as the limit in

probability or L2(P)-sense of the Riemann sums, and the last
term is the Malliavin trace.
When u is adapted, that is u is FW

s -measurable for all s the
Malliavin trace vanishes and the Skorokhod integral coincides
with the Ito integral.
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Note that if ϕ is smooth, Dϕ(F ) = ϕ′(F )DF . We have also
the product rule D(FG ) = G DF + F DG .
Consider a process uk = uk(∆W1, . . . ,∆Wn)

E

(
δ

(
u

〈u,DF 〉

)
ϕ(F )

)
= E

(〈
u

〈u,DF 〉
,Dϕ(F )

〉)
= E

(
ϕ′(F )

〈u,DF 〉
〈u,DF 〉

)
= E

(
ϕ′(F )

)
This holds for all choices of (uk) and ϕ. By taking u = DF we
obtain

E
(
ϕ′(F )

)
= E

(
ϕ(F )δ

(
DF

‖ DF ‖2

))
where

‖ DF ‖2= 〈DF ,DF 〉 = ∆t
n∑
k

(DkF )2
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Computation of densities

Let F = f (∆W1, . . . ,∆Wn) a random variable with Malliavin
Sobolev derivative. For a < b ∈ R consider

ψ(x) =

∫ b

a

1(r ≤ x)dr

which is continuous and piecewise linear with Sobolev
derivative ψ′(x) = 1[a,b](x).

P(a < F ≤ b) =

∫ b

a

pF (r)dr (when F has density )

= EP
(
1(a < F ≤ b)

)
= EP

(
ψ′(F )

)
= EP

(
ψ(F )δ

(
DF

‖ DF ‖2

))
= EP

(
δ

(
DF

‖ DF ‖2

)∫ b

a

1(r ≤ F )dr

)
= (Fubini)

=

∫ b

a

EP

(
1(r ≤ F )δ

(
DF

‖ DF ‖2

))
dr
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This implies

pF (r) = EP

(
1(r ≤ F )δ

(
DF

‖ DF ‖2

))
= EP

(
1(r ≤ F )Y

)
with Malliavin weight

Y := δ

(
DF

‖ DF ‖2

)
=

1

‖ DF ‖2
n∑

k=1

DkF∆Wk −
n∑

k=1

Dk

(
DkF

‖ DF ‖2

)
∆t

=
1

‖ DF ‖2
n∑

k=1

DkF∆Wk −
1

‖ DF ‖2
n∑

k=1

D2

kkF∆t

+
2

‖ DF ‖4
n∑

k=1

n∑
h=1

DkF DhF D2

khF ∆t
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For F = f (∆W1, . . . ,∆Wn) we need that f ∈ C 2 and
integrability conditions. The formula extends to the
in�nite-dimensional case when F is a smooth functional of the
Brownian path.

For i ∈ N let (∆W
(i)
1
, . . . ,∆W

(i)
n ), i.i.d copies of the gaussian

vector, let

F (i) := f (∆W
(i)
1
, . . . ,∆W (i)

n ),

Y (i) := Y (∆W
(i)
1
, . . . ,∆W (i)

n )

We estimate pF (t) by Monte Carlo

p̂
(M)
F (r) =

1

M

M∑
i=1

Y (i)
1(F (i) ≥ r)
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There are other choices for the Malliavin weight: for

uk =
1

n∆t DkF

we obtain

E (〈u,Dϕ(F )〉) =
1

n∆t
E
(
ϕ′(F )DF , 〈(DF )−1〉

)
=

=
1

n∆t
E

(
ϕ′(F )

n∑
k=1

(DkF )−1DkF∆t

)
= E (ϕ′(F )) = E

(
ϕ(F )U

)
with Malliavin weight

U =
1

n∆t
δ
(
(DF )−1

)
(0.7)
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Example: quadratic functional

Let

F =
n∑

k=1

W 2

k ∆t with

DhF = 2
n∑

k=h

Wk∆t, D2

h,hF = 2(n − h + 1)∆t

We compute the Malliavin weight 0.7
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U =
1

n∆t

( n∑
h=1

1

DhF
dWh −

n∑
h=1

Dh

(
(DhF )−1)

)
∆t

)

=
1

2n∆t

n∑
h=1

( n∑
k=h

Wk∆t

)−1
∆Wh

+
1

n∆t

n∑
h=1

(
2

n∑
k=h

Wk∆t

)−2
2(n − h + 1)(∆t)2 =

1

2n(∆t)2

{ n∑
h=1

( n∑
k=h

Wk

)−1
∆Wh

+
n∑

h=1

( n∑
k=h

Wk

)−2
(n − h + 1)∆t

}
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Counterexample: Maximum of gaussian random

walk

Let W0 = 0, Wm =
∑m

k=1
∆Wk for m = 1, . . . , n the gaussian

random walk, and let

F = W ∗
n := max

m=0,1,...,n

{
Wm

}
= f (∆W1, . . . ,∆Wn)

Let

τn = τn(W1, . . . ,Wn) = arg max
m=0,1,...,n

Wm

the random time where the maximum is achieved. Note that
with positive probability W ∗

n = 0 and τn = 0 when the random
walk stays on the negative side, so we know that there is point
mass at 0, W ∗

n does not have a density.
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Clearly for k = 1, . . . , n

DkW
∗
n = ∂k fn(∆W1, . . . ,∆Wn) = 1(τn ≥ k) a.s.

The problem is that the indicator of a set is never Malliavin
di�erentiable. In one dimension,let ψ(x) = 1(x ≥ r). The
derivative ψ′(x) = δr (t) is the Dirac delta function of
distribution theory (not to be confused with the Skorkohod
integral δ(u)! ):

E (ψ′(x)h(x)) = E (ψ(x)∂∗h(x))∫ ∞
−∞

ψ(x)∂∗h(x)γ(x)dx

−
∫ ∞
r

d

dx

(
h(x)γ(x)

)
dx = h(r)γ(r)− h(∞)γ(∞)

= h(r)γ(r) =

∫
R
δr (x)h(x)γ(x)dx
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Now the Dirac δr (x) is a generalized function which is not in
L2(R, γ). Therefore ψ does not have a Malliavin/Sobolev
derivative.
The second order Malliavin derivative D2

hkX
∗
n = Dh1(τn > k)

doesn't exist as random variables in L2 and the Malliavin
weights are not well de�ned. In the so called white noise
theory generalized random variables (also called random
distributons) are introduced exactly in the same way as the
generalized functions (also called distributions) of analysis.
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Hermite polynomials

Let γ(x) be the standard gaussian density in R.

Lemma

The polynomials are dense in L2(R, γ).

Proof Otherwise there is a random variable
F = f (G ) ∈ L2(P) with E (f (G )G n) = 0 ∀n ∈ N where G is
standard gaussian. Consider the (signed) measure on R

µ(A) := EP
(
f (G )1A(G )

)
We show that µ ≡ 0 which implies f (G ) = 0 P a.s.
The Fourier transform of µ is

µ̂(t) := EP(f (G ) exp(itG ))
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For t = (σ + τ i) ∈ C with σ, τ ∈ R,

µ̂(t) := EP
(
f (G ) exp(iσG ) exp(−τG )

)
Since

EP

(∣∣∣∣ ∂∂σ
{
f (G ) exp(−τG ) exp(iσG )

}∣∣∣∣)
= EP

(∣∣f (G ) exp(−τG )iG exp(iσG )
∣∣)

≤ EP
(
|f (G )G exp(−τG )|

)
≤ EP

(
|f (G )G (exp(−aG ) + exp(−bG ))|

)
where exp(−τG ) ≤ exp(−aG ) + exp(−bG ) ∀τ ∈ (a, b) ⊆ R .
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By Cauchy-Schwartz inequality

≤ EP(f (G )2)1/2E (G 2{ exp(−aG ) + exp(−bG ))2)1/2

= EP(f (G )2)1/2
{
E (G 2 exp(−2aG )) +

+E (G 2 exp(−2bG )) + 2E (G 2 exp(−(a + b)G ))
}1/2

<∞

by Lebesgue's dominated convergence theorem we can change
the order of derivation and integration (Theorem A 16.1 in
Williams' book)

∂

∂σ
µ̂(τ + iσ) = i EP

(
f (G )G exp(iσG ) exp(−τG )

)
Similarly

∂

∂τ
µ̂(τ + iσ) = −EP

(
f (G )G exp(iσG ) exp(−τG )

)
= i

∂

∂σ
µ̂(τ + iσ)

µ̂ : C→ C is analytic since satis�es the Cauchy-Riemann
condition.
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Therefore has the power series expansion

µ̂(t) =
∞∑
t=0

µ̂(n)(0)
tn

n!

µ(n)(t) =
dn

dtn
µ̂(t) = inEP(f (G ) exp(itG )G n),

µ̂(n)(0) = inEP(f (G )G n) = 0 ∀n ∈ N

where by adapting the previous argument we can take
derivatives inside the expectation. Therefore µ̂(t) = 0 and by
Lévy inversion theorem µ(dx) = 0, which implies
EP(f (G )2) = 0 �.
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Hermite polynomials in L
2(R, γ).

Let G be a standard gaussian random variable with density
γ(x).
De�ne the (unnormalized) Hermite polynomials

h0(x) ≡ 1, hn(x) = (∂∗hn−1)(x) = (∂∗n1)(x)

We have

∂hn(x) = nhn−1(x)

hn(x) = exp(x2/2)
dn

dxn
exp(−x2/2)

Ex: h1(x) = x , h2(x) = (x2 − 1), h3(x) = (x3 − 3x),
h4(x) = x4 − 6x2 + 3, h5(x) = (x5 − 10x3 + 15x)

EP(hn(G )hm(G )) = δn,mn!
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Since the polynomials are dense in L2(R, γ), it follows that the
normalized Hermite polynomials

Hn(x) :=
hn(x)√

n!
n ∈ N

form an orthonormal basis in L2(R, γ): for f (G ) ∈ L2(P),

f (G ) =
∞∑
n=0

EP(f (G )Hn(G ))Hn(G ) =
∞∑
n=0

EP(f (G )hn(G ))
hn(G )

n!

and when f (x) is in�nitely di�erentiable in Sobolev sense

=
∞∑
n=0

EP(f (G )(∂∗n1)(G ))
hn(G )

n!
=
∞∑
n=0

EP(∂nf (G ))
hn(G )

n!
(0.8)
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the convergence is in L2(P) sense

EP

({
f (G )−

M∑
n=1

EP(f (G )Hn(G ))Hn(G )

}2)
→ 0 as M ↑ ∞

De�ne the generating function

f (t, x) := exp
(
tx − t2/2

)
=
γ(x − t)

γ(x)
=

dN (t, 1)

dN (0, 1)
(x)

which is the density ratio for the gaussian shift G → (t + G )
Note that EP(f (t,G )) = 1. Since f (t, x) ∈ C∞, by 0.8

exp
(
tx − t2/2

)
=
∞∑
n=0

EP

(
dn

dxn
f (t,G )

)
hn(x)

n!

=
∞∑
n=0

EP
(
tnf (t,G )

)hn(x)

n!
=
∞∑
n=0

hn(x)
tn

n!
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Note that

tn = EP

(
hn(G ) exp

(
tG − t2/2

))
= EP

(
hn(t + G )

)
where on the right side we have changed the measure.
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Hermite polynomials in L
2(Rn, γ⊗n).

Let G = (G1, . . . ,Gn) a random vector with indepedent
standard gaussian coordinates.
Since L2(Rn, γ⊗n) = L2(R, γ)n, which is the L2-closure of the
linear space containing the products f1(x1)f2(x1) . . . fn(xn) with
fi ∈ L2(R, γ),
the polynomials in the variables x1, . . . , xn are dense in
L2(Rn, γ⊗n).

De�nition

α = (α1, . . . , αn) with αi ∈ N is a multi-index.
α! :=

∏n
i=1

αi !
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For x = (x1, . . . , xn) de�ne the unnormalized and normalized
multivariate Hermite polynomials

hα(x) =
n∏

i=1

hαi
(xi)

Hα(x) =
n∏

i=1

Hαi
(xi) =

n∏
i=1

hαi
(x)√
αi !

=
hα(x)√
α!

Lemma

{Hα(x) : α multi-index} is an orthonormal basis in L2(Rn, γ⊗n)
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Proof Let β = (β1, . . . , βn) βi ∈ N,

EP(Hα(G )Hβ(G )) = EP

( n∏
i=1

Hαi
(Gi)

n∏
j=1

Hβj
(Gj)

)
=

n∏
i=1

EP
(
Hαi

(Gi)Hβi
(Gi)

)
=

n∏
i=1

δαi ,βi
= δα,β
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In�nite dimensional gaussian space

L2(RN, γ⊗N) is the space of sequences x = (xi : i ∈ N).
On this space we use the product σ-algebra B(RN) = B(R)⊗N

which is the smallest σ-algebra such that the coordinate
evaluations x 7→ xi are measurable.
The Borel σ-algebra B(R) is the smallest σ algebra containing
the open sets.
The product measure γ⊗N is such that ∀n ∈ N,
B1, . . . ,Bn ∈ B(R)

γ⊗N({ x : x1 ∈ B1, . . . , xn ∈ Bn}
)

=
n∏

i=1

γ(Bi)
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De�nition

α = (αi : i ∈ N) with αi ∈ N and

|α| :=
∞∑
i=1

αi <∞

is a multi-index

De�nition

A polynomial in the variables (xi : i ∈ N) is given by

p(x) = c0 +
∞∑
i=1

cix
αi

i

ci ∈ R, and α is a multiindex, |α| <∞, which depends on
�nitely many coordinates.
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Next we show

L2(RN, γ⊗N) =
⊕
n∈N

L2(Rn, γ⊗n)

It follows also that when G = (Gi : i ∈ N) is a sequence of
independent standard gaussian r.v.{

Hα(G ) :=
∞∏
i=1

Hαi
(Gi), α multindex , |α| <∞

}
is an orthonormal basis.
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