D),

By (3.24) we wufj rewrte (3.23) as f?allows

(3.25) H(P)" i f’( l-l': )
We vecord the f‘ullow; un,w'y from LV2 PP Ll%l o«rq

- (3.2g) log "::' < (09 H <lJ(r~')< (oa 2(l+\fg.."?-‘-.) log ".,':'
| The qrph ot
3. 27 LQW\M Lo:t S_P } be sepo.rufed curve P
familles tn R” w:H\ ['3 <T hr al i |
P>l tho Vi-p) ]
PG T

Z
Prot. [Caam, 52Y]

3,28 2wk L T = 2SS0, 8 N BR)
S Thw Q< T, T < I‘,“ and r':,_,,i‘% ave saparale,
3\9 %.12
i n(r )= (g &
a\hcq La. u ‘/Cl-h) ]
M(T, \/"“)-al. Y = a(b? , 117 %)= a‘e;'-z
with a = N:{f‘l—m i.e. e?mh*y helds 1n 3,27,

4

3.29. Lemma let 5€(0,1) and
r, = Allo,se], 8" 87, Ny =4(losse], [en/s, ) RY)
Then M, ()= 2F'M, () for p>1.
 Proef. (lakob Choose géF(l") s. t, M )= ffpctm
Symm, = ¢ Somm. w.rt. S 5 20 Xy e F(r)

2> M (T <9_5g"o(m 2" Jg"alm -2PM ()

| "
, l\k_’ Symm. P
m ‘:roo{' for > s similav , 2



3.%0, Lause Let 8,=A (Lo, e,1 s [i"ei ‘w\)‘ Afbl[oﬁ] J[g"e , o ))
where €S and £>). Then M(a,) SM ()

Y
Pﬂwf et e..

ng=alioe, ST A <5l Ly =)
4, =a(Ioe], S"(H), A =A(S" 1), [Fe, =)

| ClearlS M[Au) M[ ) M[AM\ M(bu)
Let § be an iwnversion in S™'(F) Because AH.“ &'bu,_ |

313 gives
M(a,)=M($D,)= M) .

~ Lemwq 3.23 9jves y - oy
'/ i~w
e = m (e, Y m s Y- 2mle,Y

whereas 55 Sbwnue'hj of 4, Lewwma 3,29 qives
Mm(a,) = 2" M) .

T\\e desu-eel ;Mq 'Fn\\cws edml& f'rom *\\838 resuﬂs

331, Thm. M, (M=o 3ge FIONLT(RY s+, LFuglede]
Jeds = s0o V loc, rectifiable ye€ r,

 Prood. H—Yg sasties these hypotheses then 8 e F(I")

ol e
for k=12 ,0-*;1 ) < h""énsPo‘m-—'-ro,'k—-?‘w-

chhgfo& -MF'(P):‘_Q Canvev-se‘-j sufrpose 'H\‘i Mp(ﬁ"’;‘b %J



~k
- chonse. gkeF(P) st fg:dm <H b=y, 2 Write

W\\ma g GL?(IR) Fo‘- e"""“} loc reci‘ xer we Mve

o "/P 5 .
oy Y 5!: }

m,pu;, “a Jrds = for ¥ hevect. reto

3 32 'wa\e bne can vueh:l'nhm33l to de.aluce Thm 3, é
3 Some'hmes a -Y-a.wulﬂ Y' er'\ M. (P) 0 is <4,L(.<¢=Q/b exce homd'

The family of all non—constant curves passing through a fixed point is n—excep-

tional as was pointed out in the paragraph following (5.15). One can show that such

’ a family is not p-exceptional if p > n (see [GOR, Chapter 3], [MAZ2]). We shall
: require this result in the following form, which is sometimes called the sphcr:calé:a‘p
] inequality. For this result we inftroduce first an extension of the definition (,5/ 1) of
1 the p-modulus. Suppose that S is a euclidean sphere in R™ with radius r and
I' is a family of curves in S. We equip S with the restriction of the euclidean

metric of R"™ to § and with the (n—1)-dimensional Hausdorff measure m,_; with

-1

Myp_1(S) = wp_1r""1. Let A(T) be the set of all non-negative Borel-measurable

functions p: § — R U {oo} with
/ pds>1
¢

for all locally rectifiable (with respect to the metric ds) curves 4 in T' and set

M3(T) = inf "dmg,_q .
n() pelfl}(l‘) Sp My

For pe(0,m) let Cp) ={2€R™: z-¢e, > |2z|cosp}.



P
{
i
i

3.33 - | - |
5,28, Lemma. Let § = S"(r), ¢ € (0,7], let K be the spherical cap

SNC(p), and let E and F be non-empty subsets of K.
(1) Then

frcit]

ME (A(E,F;K)) > %’i
where b, is a positive number depending only on n.
(2) If K=85,ie @=m, then b, may be replaced by ¢, = 2"b,, in the above
inequality.
3.33
The proof of 528 (see [V7, 10.9]) is based on an application of Holder’s inequality
and Fubini’s theorem. A similar method yields also the following improved form of

5.28 ([R12, p. 57, Lemma 3.1}, [GV1, p. 20, Lemma 3.8}).

3033 3.3)1 3-%’5
5.297 Lemma. Assume that E, F, and K are as in 528(1). If v € (0,37),
then |

d
18 . &n
M,,(A(E,F,K)) z ot

where d, depends only on n.

,5395: Remark. Throughout the book we will denote by ¢, the number in
528(2). The number b, =27"¢cp has the following expression

3.93% )
. . bn ‘—:,21-2" Wp—2 I,,l‘-n , b2 = 57‘_' N
(5/31) /2 o—n
2.3 In, =/ sin»=1 tdt .
° 3.36
Because —f;t <sint<t for 0<t< -%'n , it follows from (5.&1) that
. g 1/(n—1) T
(n—l)(-é-) _<_In§(n——1)—2-

for n > 2. One can show that 2"¢, — 0 when n — oo [AVV3].

3.\ |
By (54), any admissible function p yields an upper bound for M, (T'), that is

My(T) < [gn pP dm . The problem of finding lower bounds for M, () is much more
difficult because then we need a lower bound for fRn pPdm for every admissible p.

The next important lower bound for the modulus follows by integration from 5.28"

- and 5.29. 3.3%Y4 . 3.33

T
: 1 |
—



532. Lemma. Let 0<a < b and let E, F be sets in R" with

3.33
ENS™Yt) £0# FnStT(t)

for t € (a,b) . Then
/ | - M(A(E,F;B™() \B’;(a))) > en log% :

Equality holds if E = (a:el,bel) , F = (—bey,—ae;).

‘ .38
\ 5:83. Corollary. If E and F are non-degenerate continua with 0 € EN F

then M(A(E,F)) = oo
3.5%
| . ne1 n—1
Proof. Apply 587 with a fixed b such that S" (b)) NE # 0 # S*™ ()N F

andlet a — 0. O
337 3.3%

| We next give a typical application of Lemma 5.32 Unlike_5:37 this application
fails to give a sharp bound, but 1t yields adequate bounds in many cases (see e.g.
Section 6). A sharp version of,5434 requires some information about spherical

symmetrization, will-be-given-in-Section¥-{see-F32-and-733}<

3.39
_5.32. Lemma. Let ¢t >r >0 andlet E C B*(r) be a connected set containing

at least two points. Then

2t + d(E)

M(A(Sn_l(t)ﬁE)) > Cn log‘m .

Proof. Fix u,v € E with |u —v| = d(E) = d and choose h € GM(B"(t)) with

hw) = —se1 = —h(s) . By | :

d(E) = |u—v| < 2th 1p(s,v) = 2th Lp(h(w), h(v)) = 2 ,
3.3%
where p refers to the hyperbolic metric of B"(t). Applying.5-327to the annulus

Bn(tey,t +s) \ B*(te1,t — s) with E = hE and F = S""!(t) we obtain

t+s
— 8

M(A(5™1(t), E)) = M(A(S™*(t), hE)) > e log -

m+am

w—d(E) o

> cp log




. The cap-ineg.a pplLed@
in_this anaulus

_ Figure for the pf of 3.33

We shall frequently apply the following lemma when proving lower bounds for
the modulzi- of curve families. This lemma will be called the comparison principle for
the modulus. In the applications of this lemma, the sets F3 and Fy will often be
chosen to be non—degenerate continua (that is continua containing at least two distinct
points) while the sets F; and Fp will usually be very “small” sets when compared

‘to F3 and Fy.

3.40
5.85. Lemma. Let .G be a domain in R™, let F;c@, j=1,2,3,4, and let

Ty = A(F:, F;;G), 1< 4,5 < 4. Then
M(T12) > 37" min{ M(T'13), M(T24), inf M(A (713, 1124 G)) }

where the infimum is taken over all rectifiable curves 13 € I'13 and o4 € T'24.

3.2
Proof. By 5Z(1) we may assume that F; #0, j=1,2,3,4. Fix
j

pE F(Tu) I
34|

528 [ pis=3
M3

for every rectifiable ;3 € 'y or

527) [ ots=3
3 'Ll 1 24 .




for .every rectifiable 24 € T'24 , then it follows from 5.8 and (5.1) that

(539) | / prdm > 37 min{ M(T'1a), M(T24)}

F3

Y13 F
4

3.4 | Diagram 5.4.

3.4
If both (586) and M fail to hold we seléct rectifiable curves 313 € I'13 and
24 € T2s . Because p € 7(T'12) it follows that

' pds>1
713U & Unzs ‘ 3.4
for every locally rectifiable @ € A = A(|msl,|v24];G) . Because both (5<36) and
(;.37 ) fail to hold it follows from the last inequality that '

3.42 ' )
/ pds 2 3
) [»
for each locally rectifiable o € A . Hence
3.4 .
(5/3% / p™dm > 37"M(A) > 37" inf M(A(|v1s [724]; G))

where the infimum is taken over all rectifiable curves 13 € I'13 and o4 €T24. In

every case either §/33) or (;39) holds, and the desired inequality follows. O

3.43 3HY
_540. Corollary. Let F; CR" and Ty = A(F;, Fy), 1<4,5<4. Then

3"15-' M(I‘lz) Z 3_"' mm{ M(rls), M(P24), 5,,,(1') }
where r = min{ ¢(F1, Fs), q(F2,Fs)} and
| 5,(r) = inf M(A(E, F)) .

Here the infimum is taken over all continua E, F in R™ such that ¢(E) > r,

g(F)>r.




Tt is clear that 6,(0) = O in 5.40. In fact, this follows from 5.18(2) if we choose e
r € (0,1/\/2—) ,set s =+/1—r2,andlet r — 0. We are going to show that 6u(r) >0

for r > 0. To this end the following corollary will be needed.

3.4¢ :
5-4%. Corollary. If z€ R*, 0<a <b< oo, and Fy, Fy C B"(z,a),

Fs CR™\ B™(z,b), Tij.= A(F:, Fy) , then

(1) M(ru) >3~" min{ M(T1s), M(T'z3), cnlog % } :
: (2) M(Plz) _>_ d(n,b/a,) min{ M(rlg), M(Fzg)} .
il 349 i

Proof. We apply the comparison principle 585 with G =R" and F3 = F; to
get a lower‘bgund for M(T;2). It follows from 5,3? that the infimum in the lower _
bound of 5.85"is at least ¢y, log 2 and thus (1) follows. For the proof of (2) we observe B
that by 5.3 and (5.14)

- max{ M(T1s), M(T23) }<A=wp (193 %) T .

By part (1) we get ] ”

M(Flz) Z 3—"' min{ M(P13), M(I‘za), A (Cn log b) min{ M(rw), M(I‘z’g) }}
> d(n,b/a) min{ M(T13), M(T'23) } A

where d(n,b/a) = 37" min{1, Lc,log(b/a)}. O

3.2 '
B4Z. Lemma For n > 2 there are positive numbers d and D with the

following properties.
(1) If E,F C B"(s) are connected and d(E) 2 st, d(F) > st, then
M(A(E,F)) > dt.
(2) If E,F CR" are connected and ¢(E) >t, q(F)>t, then
M(A(E, F)) > 6,(t) > Dt.
_ » 3.%9
Proof. (1) By 534 we obtain

i

M(A (S (25), E)) > enlog s zz

$¢n(log 2)t

3496
and similarly M(A(S’”"I(ZS),F)) > lc,(log2)t. Applying 541(1) with F; = F,

F, = E,and F3 = S"1(2s) and the above estimates we get

M(T12) > 37" min{ $cn(log2)t, cn logz} > dt



D,

where d=1.3""¢,log2.
(2) Observe first that both the first and last expressions in the asserted inequality

remain invariant under spherical isometries _(,see’S—ﬁ) By performing a preliminary
- spherical isometry if necessary we may assume that —re; € E, re; € F,and r € [0,1]
et TI5(1)). Let B (F1) be that component of ENB"™(2) (of FNB"(2), resp.)

which contains —re; (re; ). Then
d(E1) > g(Ey) 2 min{t, ¢(5"*,571(2)) } 2 ¢/v/10,

and likewise d(F;) > ¢/v/10. The proof of (2) follows from (1) with D = d//10.
a

Fo\' ‘H\e case of cormeci'ei seTs E F 'H\e a.bove resulfs
| e.na\ﬂe us o prove W\my useful :wz?‘uALhes for M(A(E, P))
_The next result applies alie for disconmeed sets £,F,

| 3%8 Thm For n>2 ’t‘here exist Po;,i- humbers d,,. 49.
,we a sel f"mﬁ%“ c(-): M(Rh)—-i- @, =) 5.t
O <(8)= <clhe) Y EcR" Vq.-tsome“h-i A
(@) c(¢) o, Ac BER” < <@ =c(B)
S (FrO = 4 2 cen)
(3) IF Ec®R" (s comyac'f then c.(E)>0é;> capE>0,
| Aso ¢ (R") =y <.
W) I+ E is unmcfzc{ then c(€) >d3?(E)
) M(ACE F)) o, mn{cC‘E) ()} VEF< tR
(&) For n22, £ e&(o,l) thare existg ceg_(n, f') s. &.
Ms (2,P) 2 dg winfe(®), c(R)} YVEF=R"
?(E,P) =%,

Note . The condibion Ca\fE>0 wil be o@d’-iw.a' lqj“ﬁf.



3.49, The construction of c(E). For EC_-@: xe®R o04rctal
we write (recall Qz,R)=%x R - q.(—zxk)<"} ))

(3 5_0) (E r, ,) M(A(‘aQ()L,ﬂ') EN Q(x,r)))
4_ { mce x) bm (e !/ ) f--- F/g
Now dafineg

[ <(E,¥) wuzim(E x) M(E,x)]-
6. 51) {c(E)::m/,is(& x):xe IR"}

We have
(3.52) M(A(RL,H),300,9) =

M(A(BQ(0,#)20(0,5)=
@y (lv‘? fv_ri-} 1-v;<

")

(359 m (£ s m(® )= (460 2 ) %00,1z)])

For the prof of Thm 348 see [CGQM, Seckon6],



