Introduction to Conformal Geometry and Quasiconformal Maps Department of Mathematics and Statistics

University of Helsinki

Winter 2011 / Vuorinen

Exercise 12, 2011-04-19 File: icg1112.tex, 2011-4-4,9.31

1. Let $f: B^2 \to B^2 \setminus \{0\} \equiv G$ be the analytic function defined in h1001, $f(z) = \exp(g(z))$ when $g(z) = -(1+z)/(1-z), z \in B^2$. Estimate for $t \in (0,1)$

$$\sup\{k_G(f(0), f(z)) : |z| = t\}.$$

Hint: Consider $k_G(|f(0)|, |f(z)|)$.

- **2.** Let $G \subset \mathbf{R}^n$ be a domain, $x_0 \in G, G_1 = G \setminus \{x_0\}, t \in (0, 1/2]$. Show that there is a constant $c \geq 1$ such that for all $x, y \in G \setminus B^n(x_0, td(x_0))$ $k_{G_1}(x, y) \leq ck_G(x, y)$.
- **3.** Find a counterpart of the Schwarz lemma for
- (a) K-qm mappings $f: Q(z,r) \to Q(w,s), f(z) = w$.
- (b) K-qr mappings $f: \mathbf{H} \to \mathbf{H}$, $f(e_n) = e_n$.
- **4.** Let $f: \mathbf{B} \to \mathbf{B}$ be K-qr and u(x) = 1 |f(x)|. Show that the Harnack inequality holds for u.
- **5.** Let $G \subset \mathbf{R}^n$ be a domain $x, y, z \in G$ with |x-y| = d(x)/2 and |x-z| > d(x). Find a lower bound for $\lambda_G(x,z)$ in terms of $\lambda_G(x,y)$ and $k_G(z,y)$. Hint: You may reduce the former case $(\lambda_G(x,z))$ to the latter case $(\lambda_G(x,x))$ by use of an auxiliary qc mapping as follows. It is well-known [GP] that for a domain $D \subset \mathbf{R}^n$ and $x, y \in D$ there is a K-quasiconformal mapping $f: D \to D$ with f(z) = z for all $z \in \partial D$ with f(x) = y, $K \le \exp(c_1 k_D(x,y))$ where $c_1 > 0$ is a constant.
- **6.** Let $f: \mathbf{B} \to Z$, $Z = \{x \in \mathbf{R}^n : \sum_{j=1}^{n-1} x_j^2 < 1\}$ be K-qr, f(0) = 0. Show that

$$|f(x)| \le AK(\log \frac{1+|x|}{1-|x|} + B),$$

where A, B depend only on n. [Hint: 5.29[CGQM] and μ -metric.]