Introduction to Conformal Geometry and Quasiconformal Maps
 Department of Mathematics and Statistics
 University of Helsinki
 Winter 2011 / Vuorinen

Exercise 11, 2011-04-12 File: icg1111.tex, 2011-4-4,9.28

1. Let $c \geq 1$, and let $G \subset \mathbf{R}^{n}$ be an open set. A positive, continuous function $u: G \rightarrow R_{+} \backslash\{0\}$ is called a c-Harnack function if the inequality

$$
\sup _{\mathbf{B}(x, r)} u(z) \leq c \inf _{\mathbf{B}(x, r)} u(z)
$$

holds whenever $\mathbf{B}(x, 2 r) \subset G$. Well known examples of functions satisfying Harnack's inequality are positive harmonic functions in the plane.
(a) Let $u(z)=\arg z$ and $G=\mathbf{C} \backslash\{x \in \mathbf{R}: x \geq 0\}$. Find a constant $c \geq 1$ such that $u(z)$ is c-Harnack in G.
(b) Let $K \subset G$ be compact and $u(z)$ as in (a). Does there exist a constant D depending on $d(K) / d(K, \partial G)$ such that

$$
u\left(z_{1}\right) \leq D u\left(z_{2}\right)
$$

for all $z_{1}, z_{2} \in K$? Hint. Show that in the domain of part (a) there are compact sets K such that the quasihyperbolic diameter of K does not have a majorant in terms of $d(K) / d(K, \partial G)$.
(c) Let $K \subset G$ be compact. Show that $u(x)=\exp \left(-k_{G}(x, K)\right)$ satisfies the Harnack inequality.
2. Let $G, G^{\prime} \subset \mathbf{R}^{n}$ and $f:\left(G, k_{G}\right) \rightarrow\left(G^{\prime}, k_{G}^{\prime}\right)$ be uniformly continuous, and let $b^{\prime} \in \partial G^{\prime}$. Show that $u: G \rightarrow R_{+}, u(x)=\left|f(x)-b^{\prime}\right|$ satisfies Harnack's inequality.
3. Let $E \subset \mathbf{B}$ be compact. Suppose that

$$
m_{n}\left(E_{k}\right)=a_{k}, E_{k}=\left\{x \in \mathbf{R}^{n} \backslash E: 2^{-k-1}<d(x, E)<2^{-k}\right\}, k=1,2, \ldots
$$

Use Lemma $5.24[\mathrm{CGQM}]$ to find an upper bound for $\mathrm{M}\left(\Delta\left(E, S^{n-1}(2)\right)\right)$. Apply your bound to give a sufficient condition for cap $E=0$ in terms of the numbers $\left(a_{k}\right)$.
4. Let $G=\mathbf{B} \backslash\{0\}, f: G \rightarrow G^{\prime}=f(G)$, be a homeomorphism with the property that there exist curves $\alpha_{j}:[0,1) \rightarrow G, j=1,2$, such that $\alpha_{j}(t) \rightarrow$ $0, f\left(\alpha_{j}(t)\right) \rightarrow \beta_{j} \in \partial G^{\prime}, t \rightarrow 1$. Show that $\beta_{1}=\beta_{2}$ if there exists $C \geq 1$ with $k_{G^{\prime}}(f(x), f(y)) \leq C k_{G}(x, y)$ for all $x, y \in G$. Show that $\beta_{1}=\beta_{2}$ also holds if there exists $K \geq 1$ such that $\mathrm{M}(\Gamma) \leq K \mathrm{M}(f \Gamma) \leq K^{2} \mathrm{M}(\Gamma)$ for all curve families Γ in G.
5. Let $D=\{z \in \mathbf{C}: 0<\arg z<\theta, 0<|z|<1\}, z_{1}=1, z_{2}=e^{i \alpha}$ for $0<\alpha<\theta, z_{3}=e^{i \theta}$ and $z_{4}=0$. Find the modulus of the quadrilateral $\left(D ; z_{1}, z_{2}, z_{3}, z_{4}\right)$.
In other words, find a conformal map of D onto $\{z \in \mathbf{C}: \operatorname{Im} z>0\}$ such that the points z_{k} are mapped onto the real axis and compute the cross ratio of these points.

