Introduction to Conformal Geometry and Quasiconformal Maps Department of Mathematics and Statistics University of Helsinki Winter 2011 / Vuorinen Exercise 10, 2011-04-05 File: icg1110.tex, 2011-3-28,13.58

1. Let $G, G' \subset \overline{\mathbb{R}}^n$ be domains, and let $f: G \to G' = fG$ be continuous. The *cluster set* of f at a point $b \in \partial G$ is the set $C(f, b) = \{b' \in \overline{\mathbb{R}}^n : \exists (b_k) \in G^n, b_k \to b, f(b_k) \to b'\}$. It is clear that $C(f, b) \subset \overline{G'}$, and that for injective maps $C(f, b) \subset \partial G'$. The cluster set C(f, b) is a singleton iff f has a limit at b. The cluster set is connected if there are arbitrarily small numbers t > 0 such that $B(b, t) \cap G$ is connected. We say that f is *boundary preserving* if $C(f, b) \subset \partial G'$ for all $b \in \partial G$.

(a) Find for each $b \in S^1$ the cluster set C(f, b) of the analytic function $f: B^2 \to B^2$, with $f(z) = \exp g(z)$ when $g(z) = -(1+z)/(1-z), z \in B^2$. (b) Let $G, G' \subset \overline{\mathbb{R}}^n$ be domains, and let $f: G \to G' = fG$ be open and continuous. Show that f is boundary preserving iff f is proper.

2. Let $f : \mathbf{B} \to f(\mathbf{B}) \subset \mathbf{R}^n$ be a homeomorphism with the property that there exists a number $K \geq 1$ such that for all $x, y \in \mathbf{B} \mu_{f(\mathbf{B})}(f(x), f(y)) \leq K\mu_{\mathbf{B}}(x, y)$, and let (b_n) be a sequence of points in **B** such that $b_k \to b \in \partial \mathbf{B}$ and $f(b_k) \to \beta$. (It is known, that $\partial f \mathbf{B}$ is connected, cf. **1**.) Let $\rho(a_k, b_k) < M \forall k$. Show that $\lim_{k\to\infty} f(a_k) = \beta$ exists. Does the same conclusion hold for noninjective mappings?

3. Let A, B, C, D be distinct points on the unit circle S^1 in the stated order and 2α and 2β the lengths of the arcs AB and CD, respectively. Find the least value of $M(\Delta(AB, CD))$. [Hint: |A - C||B - D| = |A - B||C - D| + |B - C||A - D| by Ptolemy's theorem [CG, p. 42], [BER, 10.9.2].]

4. Let $E \subset \mathbf{R}^n$ be compact, $\operatorname{cap} E > 0$ and $E(t) = \bigcup_{x \in E} \mathbf{B}(x, t)$. It follows from Ziemer's theorem that for a fixed t > 0 cap $(E(t), \overline{E(s)}) \to \operatorname{cap}(E(t), E), s \to 0$. Show that cap $(E(t), E) \to \infty$, when $t \to 0$. [Hint: Ziemer's theorem and 5.24[CGQM] may be helpful here.]

5. Let $f : \mathbf{B} \to \mathbf{B}$ be a homeomorphism with f(0) = 0 and assume that there is $K \ge 1$ such that for all distinct $x, y \in \mathbf{B}$

 $\lambda_{\mathbf{B}}(x,y)/K \le \lambda_{f\mathbf{B}}(f(x),f(y)) \le K\lambda_{\mathbf{B}}(x,y).$

Prove that there are a, b, c, d > 0 such that $a|x|^b \leq |f(x)| \leq c|x|^d$ for all $x \in \mathbf{B}$.

6. In complex notation, Möbius transformations are defined by $T(z) = \frac{az+b}{cz+d}$ with $\Delta = ad - bc \neq 0$. These mappings generate a group. (a) Prove that $T(z_1) - T(z_2) = \frac{\Delta(z_1-z_2)}{(cz_1+d)(cz_2+d)}$. (b) Prove that the cross ratio $[z_1, z_2, z_3, z_4] = \frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_2)(z_3 - z_4)}$ is invariant under *T*. (c) Prove that $\frac{T''(z)}{T'(z)} = -\frac{2c}{cz+d}$, $D(\frac{T'(z)}{T''(z)}) = -\frac{1}{2}$, and $S_T = 0$,

$$S_T = \frac{T'''(z)}{T'(z)} - \frac{3}{2} \left(\frac{T''(z)}{T'(z)}\right)^2 = \left(\frac{T''(z)}{T'(z)}\right)' - \frac{1}{2} \left(\frac{T''(z)}{T'(z)}\right)^2.$$

L. V. Ahlfors writes in [A5]: "For those who like computing I recommend proving the formula:"

$$[f(z+ta), f(z+tb), f(z+tc), f(z+td)] = [a, b, c, d](1 + \frac{t^2}{6}S_f(z) + O(t^3)).$$

Here f is an analytic function. This formula is not part of problem 6.

File: icg1110.tex, 2011-3-28,13.58