Introduction to Conformal Geometry and Quasiconformal Maps Department of Mathematics and Statistics

University of Helsinki

Winter 2011 / Vuorinen

Exercise 6, 2011-02-28 File: icg1106.tex, 2011-2-19,16.11

1. Show that for all $x, y \in G \subseteq \mathbf{R}^n$ the inequality

$$\inf_{\gamma \in \Gamma_{xy}} \log \left(1 + \frac{\ell(\gamma)}{\min\{d(x), d(y)\}} \right) \le k_G(x, y),$$

where Γ_{xy} is the family of all curves connecting the points x and y within G, and $d(x) = \operatorname{dist}(x, \partial G)$. Hint. Recall the normal representation of a curve.

2. Let $D = \mathbb{R}^2 \setminus \{te_1 : t \geq 0\}$. Show that there is no constant C > 0 such that

$$k_D(x,y) \le Cj_D(x,y), \forall x,y \in D.$$

3. Let us define

$$m(x,y) = |x-y|^{1/2}$$

for $x, y \in \mathbf{R}$. Show that m is a metric and [0, 1] is not rectifiable with respect to m. (Hint: length of [0, 1] is

$$\sup \left\{ \sum_{i=1}^{n} m(x_i, x_{i+1}) \colon n \in \mathbb{N}, \ x_1 = 0, x_{n+1} = 1, x_k < x_{k+1} \right\}.)$$

- **4.** Let $r_k \in (0, 2^{-k-3})$, let $B_k = B^n(2^{-k}e_n, r_k)$, and let $E = \bigcup B_k$.
- (a) Show that the numbers r_k can be chosen so that $\mathsf{M}(\Delta(E,\partial\mathbf{H}))=\infty$.
- (b) Show that, for every $\varepsilon > 0$, the numbers r_k can be chosen so that

$$\mathsf{M}(\Delta(E,\partial\mathbf{H}))<\varepsilon.$$

(c) Assume that the numbers r_k have been chosen as in (b) with $\varepsilon = 1$. Show that

$$\mathsf{M}(\Delta(E_r,\partial\mathbf{H}))\to 0$$

when $r \to 0$ where $E_r = E \cap \overline{\mathbf{B}^n(r)}$.

5. Let $E, F \subset R(2,1), R(a,b) = \mathbf{B}^n(a) \setminus \overline{\mathbf{B}^n(b)}, a > b > 0$, and

$$\delta = \mathsf{M}(\Delta(E, F, \mathbf{R}^n)) > 0.$$

Find a number $c > 1, c = c(n, \delta)$, such that $\mathsf{M}(\Delta(E, F, R(2c, 1/c))) \ge \delta/2$.

6. Let $E \subset \mathbf{B}^n$ and $\delta = \mathsf{M}(\Delta(S^{n-1}(2), E, \mathbf{R}^n)) > 0$. Find a number $c > 1, c = c(n, \delta)$, such that

$$M(\Delta(S^{n-1}(2), E, R(2c, 1/c))) \ge \delta/2.$$

File: icg1106.tex, 2011-2-19,16.11