Introduction to Conformal Geometry and Quasiconformal Maps Department of Mathematics and Statistics

University of Helsinki

Winter 2011 / Vuorinen

Exercise 5, 2011-02-21 File: icg1105.tex, 2011-2-7,9.32

- 1. Let $G = \mathbb{R}^n \setminus \{0\}, x, y \in G$, and let $\varphi \in [0, \pi]$ be the angle between the segments [0, x] and [0, y].
- (a) Show that $\sin \frac{1}{2}\varphi \le \frac{|x-y|}{|x|+|y|}$. (b) Show that $|x-y| \le ||x|-|y|| + 2\min\{|x|,|y|\}\sin(\varphi/2)$.
- (c) It is known (by [MOS]) that $k_G(x,y) = \sqrt{\varphi^2 + \log^2 \frac{|x|}{|y|}}$. Using this result show that there is constant A such that that $k_G(x,y) \leq A j_G(x,y)$ for all $x, y \in G$ i.e. that G is a uniform domain.
- **2.** Let $x, y \in \mathbb{R}^n \setminus \{0\}$ and $|y| \ge |x|$. Show that $d(y, [0, x]) \ge \frac{|x-y|}{2}$.
- **3.** Let $f \in \mathcal{GM}(\mathbf{B}^n)$ and $r \in (0,1)$. Show that

$$|f(x) - f(y)| \le \frac{1}{1 - r^2} |x - y|,$$

for $|x|, |y| \le r$. [Hint: $\sinh^2 \frac{\rho(x,y)}{2} = \dots$]

4. For an open set D in \mathbb{R}^n , $D \neq \mathbb{R}^n$, let

$$\varphi_D(x,y) = \log\left(1 + \max\left\{\frac{|x-y|}{\sqrt{d(x)d(y)}}, \frac{|x-y|^2}{d(x)d(y)}\right\}\right); \ x, y \in D.$$

Show that $j_D(x,y)/2 \le \varphi_D(x,y) \le 2 j_D(x,y)$.

- **5.** Let $G = \mathbb{R}^n \setminus \{0\}$ and $f(x) = a^2x/|x|^2$ for $x \in G$, where a > 0. Show that $k_G(f(x), f(y)) = k_G(x, y)$ and $j_G(f(x), f(y)) = j_G(x, y)$ for $x, y \in G$.
- **6.** Let $f: G \to G' = f(G), G, G' \subset \mathbb{R}^n$, be a homeomorphism such that for some C>0 and all $x,y\in G$, $k_{G'}(f(x),f(y))\leq Ck_{G}(x,y)$. Suppose that $b \in \partial G$ and that $b_k \in G$ with $b_k \to b, f(b_k) \to \beta, k \to \infty$, and let $E = \bigcup D(b_k, 1)$. Here D(x, M) stands for the quasihyperbolic ball. Prove that $f(x) \to \beta$ when $x \to b, x \in E$. Note: By topology, for each sequence (b_k) tending to a boundary point b of G such that the image sequence also has a limit γ , it follows that $\gamma \in \partial G'$.

File: icg1105.tex, 2011-2-7,9.32