Introduction to Conformal Geometry and Quasiconformal Maps Department of Mathematics and Statistics University of Helsinki
 Winter 2011 / Vuorinen

Exercise 2, 2011-01-31 File: icg1102.tex, 2011-1-23,20.53
N.B. Numbered results/ formulas refer to CGQM.

1. Let f be an inversion in $S^{n-1}(a, r)$ as defined in $1.2(2)[C G Q M]$. Show that $f^{-1}=f$ and that $|x-a||f(x)-a|=r^{2}$ for all $x \in \mathbf{R}^{n} \backslash\{a\}$. By considering similar triangles show that the following identity holds for $x, y \in \mathbf{R}^{n} \backslash\{a\}:$

$$
|f(x)-f(y)|=\frac{r^{2}|x-y|}{|x-a||y-a|}
$$

2. (a) For $0<t<1$ let $w(t)=t / \sqrt{1-t^{2}}$. Show that $q\left(0, w(t) e_{1}\right)=t$ and that

$$
\frac{t}{s}<\frac{w(t)}{w(s)}<\frac{2 t}{s}
$$

for $0<s<t<\frac{1}{2} \sqrt{3}$.
(b) Let $q(A)=\sup \{q(x, y): x, y \in A\}$ for $A \subset \overline{\mathbf{R}^{n}}$. Show that

$$
q(Q(z, r))=q(\partial Q(z, r))=2 r \sqrt{1-r^{2}}
$$

for $0<r \leq 1 / \sqrt{2}$.
3.(a) Let $x, y \in \mathbf{B}^{n}$ with $s=q(0, x), t=q(0, y)$. Show that

$$
q(x, y) \leq s \sqrt{1-t^{2}}+t \sqrt{1-s^{2}} \leq t+s .
$$

(b) Let $x, y \in \mathbf{R}^{n} \backslash\{0\}$ with $q(0, x)>q(0, y)$. Show that the strict inequality $q(x, y)>q(0, x)-q(0, y)$ holds.
4. For $x, y \in \mathbf{R}^{n}$ prove the following:

$$
\begin{gathered}
q(x, y)=\frac{|x-y|}{\sqrt{(1+|x||y|)^{2}+(|x|-|y|)^{2}}} . \\
\frac{|x-y|}{\sqrt{|x-y|^{2}+(1+|x||y|)^{2}}} \leq q(x, y) \leq \frac{|x-y|}{\sqrt{|x-y|^{2}+(1-|x||y|)^{2}}} . \\
q(x, y) \leq \frac{|x-y|}{2}
\end{gathered}
$$

for $|x||y| \geq 1$, with equality for $x, y \in S^{n-1}$ or $x=y$.

$$
q(x, y) \leq|x-y| /(|x|+|y|)
$$

with equality iff $|x||y|=1$ or $x=y$.
5. Let $h(x)=x /|x|^{2}$. Show that h maps the sphere $S^{n-1}\left(b e_{1}, s\right)$ (assume that $b>1+s)$ onto a sphere. Hint. Write $u=(b-s) e_{1}, v=(b+s) e_{1}$. If the image is a sphere $S^{n-1}(c, t)$, then clearly $c=(h(u)+h(v)) / 2$ and $t=|h(u)-h(v)| / 2$. Hence it remains to show that $\left|z-b e_{1}\right|=s$ implies $|h(z)-c|=t$.
6. The lines $\left[-e_{1}, 0\right]$ and $\left[a e_{1}, \infty\right], a>0$, can be mapped onto $\left[-e_{1}, e_{1}\right]$ and $\left[b e_{1}, \infty\right] \cup\left[-b e_{1}, \infty\right]$ by a Möbius transformation. Give a definition for b in terms of a. Notice that $[x, \infty]=\{x t: t \geq 1\}$, if $x \in \mathbf{R}^{n} \backslash\{0\}$.

