Introduction to Conformal Geometry and Quasiconformal Maps Department of Mathematics and Statistics

University of Helsinki

Winter 2011 / Vuorinen

Exercise 1, 2011-01-24 File: icg1101.tex, 2011-1-15,14.25

N.B. Numbered results/ formulas refer to CGQM.

- **1.** Perhaps the simplest non-injective map is $f: z \mapsto z^2$. Find a domain $D \subset \mathbb{C}$ such that $f|_D: D \to fD$ is not closed.
- 2. Find a Möbius transformation

$$z \mapsto \frac{az+b}{cz+d}$$
, $ad-bc \neq 0$,

which maps $H^2=\{(x,y)\in\mathbf{R}^2\colon y>0\}$ onto $B^2=\{(x,y)\in\mathbf{R}^2\colon x^2+y^2<1\}$ such that $(-1,0,1)\mapsto (1,i,-1)$ [i=(0,1)].

- **3.** A mapping $f: \mathbf{R} \to \mathbf{R}$ is said to be Hölder continuous, if there exist constants $C, \beta > 0$ such that for all $x, y \in \mathbf{R} |f(x) f(y)| \le C|x y|^{\beta}$. Let $f: \mathbf{R} \to \mathbf{R}$ be Hölder continuous with exponent $\beta > 1$. Show that f is a constant, equal to f(0).
- **4.** Let $\rho: \mathbf{R}_+ \times \mathbf{R}_+ \to \mathbf{R}_+$, $\mathbf{R}_+ = (0, \infty)$, be defined by $\rho(x, y) = |\log(x/y)|$. Show that ρ is a metric.
- (a) Suppose that $u: (\mathbf{R}_+, \rho) \to (\mathbf{R}_+, \rho)$ is uniformly continuous. Show that $u(x) \leq Ax^B$ for some constants A and B for all $x \geq 1$.
- (b) Suppose that $u: (\mathbf{R}_+, d) \to (\mathbf{R}_+, \rho)$ is uniformly continuous, where d is the euclidean metric. Find an inequality of the same type as in (a) [but some other function in place of Ax^B].
- 5. Let $D = H^2 = \{(x,y) \in \mathbf{R}^2 : y > 0\}$. The modulus $M(D; -1, 0, s, \infty)$ of a quadrilateral $(D; -1, 0, s, \infty)$, s > 0, is usually denoted $\tau(s)/2$ [we will define the function $\tau(s)$ later]. Fix $\alpha \in (0, \pi)$ and denote $D_{\alpha} = \{z \in \mathbf{C} : 0 < \arg z < \alpha\}$, r > s > 0, t > u > 0. Using the above notation, find $M(D_{\alpha}; re^{i\alpha}, se^{i\alpha}, u, t)$. [Hint: The modulus is a conformal invariant. Apply an auxiliary Möbius transformation to map the example to the previous case.]
- **6.** Let $G, G' \subset \mathbb{R}^n$ be domains and $f: G \to G'$ be a homeomorphism. For $x, y \in G$ define $m_f(x, y) = |f(x) f(y)|$. Is it true that m_f is a metric?