Introduction to differential forms
 model solutions 8

Jan Cristina

1.

solution. Recall that $[\alpha]+a[\beta]:=[\alpha+a \beta]$. Hence, we must show that $\partial_{k}^{*}[\alpha+a \beta]=$ $\partial_{k}^{*}[\alpha]+a \partial_{k}^{*}[\beta]$. Now given forms α^{\prime} and β^{\prime} for which

$$
g^{\#} \alpha^{\prime}=\alpha \quad g^{\#} \beta^{\prime}=\beta
$$

Then we have that $g^{\#}\left(\alpha^{\prime}+a \beta^{\prime}\right)=\alpha+a \beta$ be the linearity of $g^{\#}$. Then let $\alpha^{\prime \prime}$ and $\beta^{\prime \prime}$ be such that

$$
f^{\#} \alpha^{\prime \prime}=d \alpha^{\prime} \quad f^{\#} \beta^{\prime \prime}=\beta^{\prime}
$$

Then by construction

$$
\partial^{*}[\alpha]=\left[\alpha^{\prime \prime}\right], \text { and } \partial^{*}[\beta]=\left[\beta^{\prime \prime}\right]
$$

But then $\partial^{*}[\alpha]+a \partial^{*}[$ beta $]=\left[\alpha^{\prime \prime}+a \beta^{\prime \prime}\right]$. And $\alpha^{\prime \prime}+a \beta^{\prime \prime}$ satisfies

$$
f^{\#}\left(\alpha^{\prime \prime}+a \beta^{\prime \prime}\right)=d\left(\alpha^{\prime}+a \beta^{\prime}\right)
$$

by the linearity of $f^{\#}$ and d. Hence

$$
\partial^{*}[\alpha+a \beta]=\left[\alpha^{\prime \prime}+a \beta^{\prime \prime}\right]
$$

and

$$
\partial^{*}[\alpha+a \beta]=\partial^{*}[\alpha]+a \partial^{*}[\beta] .
$$

2.

solution. 1. The map $t \mapsto-1 / t$ is smooth for $t \neq 0$, the map $\chi_{(0, \infty)}$ is smooth for $t \neq 0$ and $x \mapsto e^{x}$ is smooth for all x, so $\phi(t)$ is the product of two smooth functions whenever $t \neq 0$. Hence ϕ is smooth for $t \neq 0$. We intend to show that $\phi^{(n)}(t)$ is continuous and $\phi^{(n)}(0)=0$. Claim: $\phi^{(n)}(t)=p_{n}(1 / t) \chi_{(0, \infty)} e^{-1 / t}$, for $t \neq 0$, where p_{n} is a polynomial.

This is easily seen by induction. It is true for $\phi^{(0)}(t)=\phi(t)=\chi_{(0, \infty)} p_{0}(1 / t) e^{-1 / t}$ where $p_{0}(x)=1$. Then if true for n, then

$$
\begin{aligned}
\phi^{(n+1)}(t) & =-p_{n}^{\prime}(1 / t) \frac{1}{t^{2}} e^{-1 / t} \chi_{(0, \infty)}+\frac{1}{t^{2}} p_{n}(1 / t) e^{-1 / t} \chi_{(0, \infty)} \\
& =\frac{1}{t^{2}}\left(p_{n}(1 / t)-p_{n}^{\prime}(1 / t)\right) e^{-1 / t} \chi_{(0, \infty)} .
\end{aligned}
$$

Clearly $\left(p_{n}(1 / t)-p_{n}^{\prime}(1 / t)\right) / t^{2}$ is a polynomial in $1 / t$.
Now we can show that $f(t)=\chi_{(0, \infty)} p(1 / t) e^{-1 / t}$ is continuous and equal to 0 at $t=0$, and that

$$
\left.\frac{d}{d t} \chi_{(0, \infty)} p(1 / t) e^{-1 / t}\right|_{t=0}=0
$$

It is well know that $e^{-x} p(x) \rightarrow 0$ as $x \rightarrow \infty$, so it is clear that $f(t)$ is continuous at $t=0$. Now consider $\lim _{t \rightarrow 0}(f(t)-0) / t$: on the left this is always 0 , and on the right this is

$$
\frac{1}{t} p(t) e^{-1 / t}=\hat{p}(1 / t) e^{-1 / t}
$$

where \hat{p} is the polynomial obtained by increasing the degree of each term of p by 1 . Hence $f^{\prime}(t)=0$. Hence ϕ is smooth.
2. Define $\hat{\phi}(t):=\phi(t-a) \phi(b-t)$. Then $t<a \hat{\phi}(t)=0$, for $a<t<b \hat{\phi}(t)>0$ and for $t>b \hat{\phi}=0$. Then define

$$
\psi(t):=\frac{1}{\int_{a}^{b} \hat{\phi} d t} \int_{-\infty}^{t} \hat{\phi}(t) d t
$$

The function ψ satisfies the desired properties and $\psi^{\prime}(t)=\hat{\phi}(t) / \int_{a}^{b} \hat{\phi} d t$.
3. Let ψ be as above for $a=1 / 2$ and $b=1$. Then define

$$
\theta(y):=1-\psi(|y-x| / \varepsilon) .
$$

The map $y \mapsto|y-x|$ is smooth for $y \neq x$, but by the chain rule

$$
D \theta(y)=-\psi^{\prime}(|y-x| / \varepsilon) D|y-x| / \varepsilon .
$$

and this is zero for $|y-x| / \varepsilon<1 / 2$, hence the map is smooth, non-negative, and support contained in the set $B(x, \varepsilon)$.
3.
solution. Define $K_{\varepsilon} \subset U$ to be the set $\{x \in U:|x|<1 / \varepsilon, d(x, \partial U) \geq \varepsilon\}$. For each $x \in K_{1}$ choose a radius $1 / 4>r_{x}>0$ such that $B\left(x, r_{x}\right) \subset U$ and $B\left(x, 2 r_{x}\right) \subset V_{i}$ for some i. Then this forms a cover of K_{ε}. Choose a finite subcover, and denote this $B_{k}: k=1, \ldots, k_{0}$. Then Let B^{0} denote the union $\bigcup_{k=1}^{k_{0}} B_{k}$. Then $B^{0} \subset K_{1 / 2}$. Now suppose we have a finite cover \mathcal{B} of $K_{2^{-p}}$ of balls with radius at most $2^{-(p+2)}$, satisfying properties (2) and (3). Then choose a finite subcover of $K^{2^{-(p+1)}} \backslash \bigcup \mathcal{B}$ of balls of radius at most $2^{-(p+3)}$ satisfying (2), called \mathcal{B}^{\prime} then $\mathcal{B} \cup \mathcal{B}^{\prime}$ is a cover of $K_{2^{-p+1}}$ satisfying properties (2) and (3).

If we do this step again, we will get collection $\mathcal{B}^{\prime \prime}$ for which no member intersects any member of \mathcal{B} when both members' radii are doubled.

In this way we can construct an increasing cover that covers $\bigcup_{\varepsilon>0} K_{\varepsilon}=U$, and satisfies the desired properties. In fact this construction yields a stronger property: every point x has a neighbourhood U which intersects only finitely many balls, i.e. the cover is locally finite.

4.

solution. Using the preceding problem, we show have a refinement of \mathcal{V} by balls B_{k} such that $2 B_{k} \subset V_{i_{k}}$ for every k some i_{k}. For each ball B_{k} define θ_{k} to be the map with support \bar{B}_{k}, and hence support contained in $2 B_{k} \subset V_{i_{k}}$. Then by construction the cover is locally finite, so take W to be a neighbourhood of x which only intersects finitely many balls. Then

$$
\hat{\phi}(x):=\sum_{k} \theta_{k}(x),
$$

is smooth because the sum is a locally finite sum of smooth functions. It is positive everywhere in U because $\bigcup_{k} B_{k}=U$, hence $\phi_{k}:=\theta_{k} / \hat{\phi}$ is smooth and has support in \bar{B}_{k}, and $\sum_{k} \phi_{k}=1$.
5.
solution. 1. We must first show that the map is well defined:

$$
\begin{aligned}
& f_{*} \sigma+f_{*} \partial \tau=f_{*} \sigma+\partial f_{*} \\
& f_{*} \sigma+f_{*} \partial \tau \sim f_{*} \sigma .
\end{aligned}
$$

Now we must show linearity:

$$
\begin{aligned}
f_{*}([\sigma]+a[\tau]) & =f_{*}[\sigma+a \tau] \\
& =\left[f_{*}(\sigma+a \tau)\right] \\
& =\left[f_{*} \sigma+f_{*} a \tau\right] \\
& =\left[f_{*} \sigma+a f_{*} \tau\right] \\
& =\left[f_{*} \sigma\right]+a\left[f_{*} \tau\right] \\
& =f_{*}[\sigma]+a f_{*}[\tau] .
\end{aligned}
$$

2. Let σ be a one cycle, that is a map $\sigma \sum_{i} a_{i} \zeta_{i}$, where $\zeta_{i}[0,1] \rightarrow X$ for which σ. Then define $\widehat{H}^{i}:=H^{i}\left(\zeta_{i}(\cdot), \cdot\right):[0,1]^{2} \rightarrow Y$. We define the 2 -chain in $[0,1]^{2}$, given by $\square=\Delta_{0}+\Delta_{1}$ where $\Delta_{0}=[(0,0),(0,1),(1,0)]$ and $\Delta_{1}=[(1,0),(0,1),(1,1)]$. Let $\tau_{i}=\widehat{H}_{*}^{i} \square$, then $\partial \tau_{i}=\widehat{H}_{*}^{i} \partial \square:$

$$
\begin{aligned}
\partial \square= & {[(0,0),(0,1)]+[(0,1),(1,0)]+[(1,0),(0,0)] } \\
& +[(1,0),(0,1)]+[(0,1),(1,1)]+[(1,1)(1,0)] \\
= & {[(0,0),(0,1)]+[(1,0),(0,0)]+[(0,1),(1,1)]+[(1,1)(1,0)] }
\end{aligned}
$$

Now we can precompose with \widehat{H}_{*}^{i} to yield

$$
\widehat{H}_{*} \partial \square=H\left(\zeta_{i}(0), \cdot\right)-g_{*} \zeta_{i}+f_{*} \zeta_{i}+H\left(\zeta_{i}(1), 1-\cdot\right) .
$$

And so

$$
\sum_{i} a_{i} \partial \tau_{i}=\sum_{i} a_{i} H\left(\zeta_{i}(0), \cdot\right)-a_{i} H\left(\zeta_{i}(1), \cdot\right)+a_{i} f_{*} \zeta_{i}-a_{i} g_{*} \zeta_{i} .
$$

By σ being a cycle we have

$$
\sum a_{i}\left(\zeta_{i}(0)-\zeta_{i}(1)\right)=0
$$

from this it follows that

$$
\begin{gathered}
\sum_{i} a_{i} H\left(\zeta_{i}(0), \cdot\right)-a_{i} H\left(\zeta_{i}(1), \cdot\right)=0 \\
\partial \sum_{i} a_{i} \tau_{i}=f_{*} \sigma-g_{*} \beta
\end{gathered}
$$

3. We note that clearly the zero chain $f_{*} \sigma(0)-g_{*} \sigma(0)=(\sigma(0), \cdot)$. Now for σ a 0 - or 1 -cycle $f_{*} \sigma \sim g_{*} \sigma$, so $f_{*}[\sigma]=g_{*}[\sigma]$, so $f_{*}=g_{*}$. The reason this is not shown for $k>1$ is that the partition of the k-square $[0,1]^{k}$ into simplices is more complicated.

6.

solution. We must first check that every chain (totally ordered subset) has an upper bound. Let $\left\{\left(W_{\alpha}, e_{\alpha}: I_{\alpha} \rightarrow W_{\alpha}\right): \alpha \in A\right\}$ be such a chain. Then

$$
\left(\bigcup_{\alpha \in A} W_{\alpha}, e_{A}: \bigcup_{\alpha \in A} I_{\alpha} \rightarrow \bigcup_{\alpha \in A} W_{\alpha}\right)
$$

where $e_{A} \mid I_{\alpha}=e_{\alpha}$. Because the chain is totally ordered this function is well defined.

Hence we can apply Zorn's lemma and so there is a maximal element $(W, e: I \rightarrow W)$. Suppose that $V \backslash W \neq \varnothing$. Then choose $v \in V \backslash W$. Then $\left(W \oplus \mathbb{F} v, e^{\prime}:\{I\} \cup I \rightarrow W \oplus \mathbb{F} v\right)$ where $e^{\prime}(i)=e(i)$ for $i \in I$ and $e^{\prime}(I)=v$. Clearly e^{\prime} forms a basis as v is linearly independent from e. This element is clearly larger, contradicting maximality. Hence (W, e : $I \rightarrow W)$ is a basis.

