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1.

solution. Recall that [α] + a[β] := [α + aβ]. Hence, we must show that ∂∗k [α + aβ] =
∂∗k [α] + a∂∗k [β]. Now given forms α′ and β′ for which

g#α′ = α g#β′ = β.

Then we have that g#(α′ + aβ′) = α + aβ be the linearity of g#. Then let α′′ and β′′ be
such that

f#α′′ = dα′ f#β′′ = β′.

Then by construction
∂∗[α] = [α′′], and ∂∗[β] = [β′′].

But then ∂∗[α] + a∂∗[beta] = [α′′ + aβ′′]. And α′′ + aβ′′ satisfies

f#(α′′ + aβ′′) = d(α′ + aβ′)

by the linearity of f# and d. Hence

∂∗[α+ aβ] = [α′′ + aβ′′],

and
∂∗[α+ aβ] = ∂∗[α] + a∂∗[β].

2.

solution. 1. The map t 7→ −1/t is smooth for t 6= 0, the map χ(0,∞) is smooth for t 6= 0
and x 7→ ex is smooth for all x, so φ(t) is the product of two smooth functions whenever
t 6= 0. Hence φ is smooth for t 6= 0. We intend to show that φ(n)(t) is continuous and
φ(n)(0) = 0. Claim: φ(n)(t) = pn(1/t)χ(0,∞)e

−1/t, for t 6= 0, where pn is a polynomial.
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This is easily seen by induction. It is true for φ(0)(t) = φ(t) = χ(0,∞)p0(1/t)e−1/t

where p0(x) = 1. Then if true for n, then

φ(n+1)(t) = −p′n(1/t)
1
t2
e−1/tχ(0,∞) +

1
t2
pn(1/t)e−1/tχ(0,∞)

=
1
t2

(pn(1/t)− p′n(1/t))e−1/tχ(0,∞).

Clearly (pn(1/t)− p′n(1/t))/t2 is a polynomial in 1/t.

Now we can show that f(t) = χ(0,∞)p(1/t)e−1/t is continuous and equal to 0 at t = 0,
and that

d

dt
χ(0,∞)p(1/t)e

−1/t
∣∣∣
t=0

= 0.

It is well know that e−xp(x) → 0 as x → ∞, so it is clear that f(t) is continuous at
t = 0. Now consider limt→0(f(t)− 0)/t: on the left this is always 0, and on the right
this is

1
t
p(t)e−1/t = p̂(1/t)e−1/t.

where p̂ is the polynomial obtained by increasing the degree of each term of p by 1.
Hence f ′(t) = 0. Hence φ is smooth.

2. Define φ̂(t) := φ(t − a)φ(b − t). Then t < a φ̂(t) = 0, for a < t < b φ̂(t) > 0 and for
t > b φ̂ = 0. Then define

ψ(t) :=
1∫ b

a φ̂ dt

∫ t

−∞
φ̂(t) dt.

The function ψ satisfies the desired properties and ψ′(t) = φ̂(t)/
∫ b
a φ̂ dt.

3. Let ψ be as above for a = 1/2 and b = 1. Then define

θ(y) := 1− ψ(|y − x|/ε).

The map y 7→ |y − x| is smooth for y 6= x, but by the chain rule

Dθ(y) = −ψ′(|y − x|/ε)D|y − x|/ε.

and this is zero for |y − x|/ε < 1/2, hence the map is smooth, non-negative, and
support contained in the set B(x, ε).

3.
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solution. Define Kε ⊂ U to be the set {x ∈ U : |x| < 1/ε, d(x, ∂U) ≥ ε}. For each x ∈ K1

choose a radius 1/4 > rx > 0 such that B(x, rx) ⊂ U and B(x, 2rx) ⊂ Vi for some i. Then
this forms a cover of Kε. Choose a finite subcover, and denote this Bk : k = 1, . . . , k0. Then
Let B0 denote the union

⋃k0
k=1Bk. Then B

0 ⊂ K1/2. Now suppose we have a finite cover B
of K2−p of balls with radius at most 2−(p+2), satisfying properties (2) and (3). Then choose
a finite subcover of K2−(p+1) \

⋃
B of balls of radius at most 2−(p+3) satisfying (2), called

B′ then B ∪ B′ is a cover of K2−p+1 satisfying properties (2) and (3).
If we do this step again, we will get collection B′′ for which no member intersects any

member of B when both members’ radii are doubled.
In this way we can construct an increasing cover that covers

⋃
ε>0Kε = U , and satisfies

the desired properties. In fact this construction yields a stronger property: every point x
has a neighbourhood U which intersects only finitely many balls, i.e. the cover is locally
finite.

4.

solution. Using the preceding problem, we show have a refinement of V by balls Bk such
that 2Bk ⊂ Vik for every k some ik. For each ball Bk define θk to be the map with support
Bk, and hence support contained in 2Bk ⊂ Vik . Then by construction the cover is locally
finite, so takeW to be a neighbourhood of x which only intersects finitely many balls. Then

φ̂(x) :=
∑
k

θk(x),

is smooth because the sum is a locally finite sum of smooth functions. It is positive every-
where in U because

⋃
k Bk = U , hence φk := θk/φ̂ is smooth and has support in Bk, and∑

k φk = 1.

5.

solution. 1. We must first show that the map is well defined:

f∗σ + f∗∂τ = f∗σ + ∂f∗

f∗σ + f∗∂τ ∼ f∗σ.

Now we must show linearity:

f∗([σ] + a[τ ]) = f∗[σ + aτ ]
= [f∗(σ + aτ)]
= [f∗σ + f∗aτ ]
= [f∗σ + af∗τ ]
= [f∗σ] + a[f∗τ ]
= f∗[σ] + af∗[τ ].
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2. Let σ be a one cycle, that is a map σ
∑

i aiζi, where ζi[0, 1]→ X for which σ. Then
define Ĥ i := H i(ζi(·), ·) : [0, 1]2 → Y . We define the 2-chain in [0, 1]2, given by
� = ∆0 + ∆1 where ∆0 = [(0, 0), (0, 1), (1, 0)] and ∆1 = [(1, 0), (0, 1), (1, 1)]. Let
τi = Ĥ i

∗�, then ∂τi = Ĥ i
∗∂�:

∂� = [(0, 0), (0, 1)] + [(0, 1), (1, 0)] + [(1, 0), (0, 0)]
+ [(1, 0), (0, 1)] + [(0, 1), (1, 1)] + [(1, 1)(1, 0)]

= [(0, 0), (0, 1)] + [(1, 0), (0, 0)] + [(0, 1), (1, 1)] + [(1, 1)(1, 0)]

Now we can precompose with Ĥ i
∗ to yield

Ĥ∗∂� = H(ζi(0), ·)− g∗ζi + f∗ζi +H(ζi(1), 1− ·).

And so ∑
i

ai∂τi =
∑
i

aiH(ζi(0), ·)− aiH(ζi(1), ·) + aif∗ζi − aig∗ζi.

By σ being a cycle we have ∑
ai(ζi(0)− ζi(1)) = 0.

from this it follows that∑
i

aiH(ζi(0), ·)− aiH(ζi(1), ·) = 0.

∂
∑
i

aiτi = f∗σ − g∗β.

3. We note that clearly the zero chain f∗σ(0) − g∗σ(0) = (σ(0), ·). Now for σ a 0- or
1-cycle f∗σ ∼ g∗σ, so f∗[σ] = g∗[σ], so f∗ = g∗. The reason this is not shown for
k > 1 is that the partition of the k-square [0, 1]k into simplices is more complicated.

6.

solution. We must first check that every chain (totally ordered subset) has an upper bound.
Let {(Wα, eα : Iα →Wα) : α ∈ A} be such a chain. Then(⋃

α∈A
Wα, eA :

⋃
α∈A

Iα →
⋃
α∈A

Wα

)

where eA|Iα = eα. Because the chain is totally ordered this function is well defined.
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Hence we can apply Zorn’s lemma and so there is a maximal element (W, e : I → W ).
Suppose that V \W 6= ∅. Then choose v ∈ V \W . Then (W ⊕ Fv, e′ : {I} ∪ I →W ⊕ Fv)
where e′(i) = e(i) for i ∈ I and e′(I) = v. Clearly e′ forms a basis as v is linearly
independent from e. This element is clearly larger, contradicting maximality. Hence (W, e :
I →W ) is a basis.
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