Introduction to differential forms
 model solutions 6

Jan Cristina

1.

solution. Consider the open cover of S^{n} by sets

$$
\begin{aligned}
U_{k+} & :=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in S^{n}: x_{k}>0\right\} \\
U_{k-} & :=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in S^{n}: x_{k}<0 .\right\}
\end{aligned}
$$

Any point on S^{n} has at least one coordinate different from 0, and hence either greater or less than 0.

Define

$$
\phi_{k \pm}: U_{k \pm} \rightarrow B^{n} \quad\left(x_{1}, \ldots, x_{n+1}\right) \mapsto\left(x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n+1}\right)
$$

This is a homeomorphism with inverse

$$
\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{k-1}, \pm \sqrt{1-\sum_{i=1}^{n} x_{i}^{2}}, x_{k}, \ldots x_{n}\right.
$$

For $U_{i \pm} \cap U_{j \pm}$ we have the transition map

$$
\phi_{i \pm} \circ \phi_{j \pm}^{-1}: \phi_{j \pm}\left(U_{i \pm} \cap U_{j \pm}\right) \rightarrow \phi_{i \pm}\left(U_{i} \cap U_{j}\right)
$$

has one component function given by $\sqrt{1-\sum_{l} x_{l}^{2}}$, and the rest are given by projections $\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{l}$. Since $\left.t \mapsto \sqrt{(} t\right)$ is smooth on $(0, \infty)$, the transition maps are smooth. The function $u\left(x_{1}, \ldots, x_{n+1}\right)=x_{n+1}$ is smooth on S^{n} since

$$
u \circ \phi_{n+1 \pm}^{-1}\left(y_{1}, \ldots, y_{n}\right)=\sqrt{1-\sum_{l} y_{l}^{2}}
$$

is smooth and

$$
u \circ \phi_{k \pm}^{-1}\left(y_{1}, \ldots, y_{n}=y_{n}\right.
$$

is smooth.

2.

solution. It suffices to show that Q is homeomorphic to a smooth manifold. Then the smooth structure cane be pulled back via the homeomorphism. In this case we show that Q is homeomorphic to S^{2}.

The appropriate homeomorphism is given by translating and scaling Q to $\partial[-1,1]^{3}$, via $x \mapsto 2 x-(1,1,1)$. Then because $\partial[-1,1]^{3}$ is compact and hausdorff we just need to construct a continuous bijection. But this is given by associating every point x on S^{2} to the unique point on the ray from 0 to x intersecting $\partial[-1,1]^{3}$

3.

solution. We know that $T \mathcal{M}=\sqcup_{p \in M} T_{p} M$ for an M-manifold m. Given (U, x) a chart on M and $p \in M$. The vectors $\left.\frac{\partial}{\partial x^{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial x^{n}}\right|_{p}$ form a basis for $T_{p} M$, where

$$
\left.\frac{\partial}{\partial x^{i}}\right|_{p} f=D_{i}\left(f \circ x^{-1}\right)(x(p)) .
$$

This allows us to define a bijection $U \times \mathbb{R}^{n} \rightarrow T U=\sqcup_{p \in U} T_{p} M$, via $\left.(p, v) \mapsto \sum_{i} v_{i} \partial_{x^{i}}\right|_{p}$. If we define a topology on $T M$ by taking a base from the images of open sets under this bijection, the maps $\tau_{U}: U \times \mathbb{R}^{n} \rightarrow T U$ will be homeomorphisms if we can show that $W \subset T U$ is open only if $\tau_{U}^{-1}(W)$ is open It suffices to check this for another base element $W=\tau_{V}\left(W^{\prime}\right)$. Let us consider charts (U, x) and (V, y)

$$
\begin{aligned}
& \tau_{U}^{-1} \circ \tau_{V} U \cap V \times \mathbb{R}^{n} \rightarrow U \cap V \times \mathbb{R}^{n} \\
&(p, v) \mapsto\left(p, v^{\prime}\right)
\end{aligned}
$$

where (p, v) is first mapped to $\left(p, \sum_{i} v_{i} \partial_{y^{i}}\right)$ which by change of variables is equal to $\Phi(p, v)=$ $\left(p, \sum_{i, j} v_{i} \partial_{y^{j}}\left(\phi^{i}\right) \partial_{x^{i}}\right)$, where ϕ is the transition map $x \circ y^{-1}$ so is finally mapped to ($p, D \phi v$), which is smooth in p and v. But then $\tau_{U}^{-1}(W)=\Phi\left(W^{\prime}\right)$ but Φ is a smooth homeomorphism, so this topology turns $T \mathcal{M}$ into a manifold, with smooth transition maps. We need only check that it is Hausdorff, and has a countable base.

It is Hausdorff because (p, ξ) can be separated from $\left(p^{\prime}, \xi^{\prime}\right)$ by $T U$ and $T U^{\prime}$ where U and U^{\prime} separate p and p^{\prime}. (p, ξ) can be separated from $\left(p, \xi^{\prime}\right)$ by choosing appropriate sets under a local trivialisation about p.

A countable base exists, because each $T U$ has a countable base, and \mathcal{M} has a countable cover by charts.

4.

solution. Let $f: N \rightarrow M$ be a smooth map. We define $f_{*}: T N \rightarrow T M$ to be given by $\left(f_{*} \xi\right)(\phi)=\xi(\phi \circ f)$ where ξ is a derivation. In this case if ξ is a derivation at p then $f_{*}(\xi)$ is a derivation at $f(p)$ (this can be checked by the Leibniz rule). $\pi_{M} \circ f_{*}=f \circ \pi_{N}$ thus ι_{*} will suffice. We must show that f_{*} is smooth map, so let $U \subset N$ and $V \subset M$ be local trivialisation such that $p \in U$ and $f(p) \in V$. Then $\tau_{U}: T U \rightarrow U^{\prime} \times \mathbb{R}^{n}$ and $\tau_{V}: T V \rightarrow V^{\prime} \times \mathbb{R}^{m}$. Then let us see how f_{*} maps $\partial_{x^{i}}$

$$
\begin{aligned}
f_{*} \tau_{U}^{-1}\left(x(p), e_{i}\right) & =\left.f_{*} \partial_{x^{i}}\right|_{p} \phi \\
& =\partial_{x^{i}}(\phi \circ f) \\
& =\frac{\partial}{\partial x^{i}}\left(\phi \circ f \circ x^{-1}\right) \\
& =\frac{\partial}{\partial x^{i}}\left(\phi \circ y^{-1} \circ y \circ f \circ x^{-1}\right) \\
& =\sum_{j=1}^{m} \frac{\partial F^{j}}{\partial x^{i}} \frac{\partial \phi \circ y^{-1}}{\partial y^{j}}, \\
& =\sum_{j=1}^{m} \frac{\partial F^{j}}{\partial x^{i}} \partial_{y^{j}} \phi
\end{aligned}
$$

where $F=y \circ f \circ x^{-1}$. This shows that

$$
\tau_{V} \circ f_{*} \circ \tau_{U}^{-1}(x(p), v)=\sum_{i=1}^{n} \sum_{j=1}^{m} v^{i} \frac{\partial F^{j}}{\partial x^{i}} e_{j} .
$$

We have that F is smooth by the assumption that f is smooth, and hence that $\tau_{V} \circ f_{*} \circ \tau_{U}^{-1}$ is smooth. Thus f_{*} is smooth.

5.

solution. 1. $\alpha: P_{p}(M) / \sim \rightarrow T_{p} M,[\gamma] \mapsto \dot{\gamma}$, where $[\gamma]=\{\sigma:(-\delta, \delta) \rightarrow M: \sigma(0)=$ $p,(x \circ \sigma)^{\prime}(0)=(x \circ \gamma)^{\prime}(0)$ for all charts $\left.x\right\}$. Suppose $\sigma, \gamma \in P_{p}(M)$ are similar, $\gamma \sim \sigma$. Then we have $(x \circ \sigma)^{\prime}(0)=(x \circ \gamma)^{\prime}(0)$ for all coordinates x.

$$
\begin{aligned}
\dot{\gamma} & =\left.\sum_{i=1}^{n} \dot{\gamma}\left(x_{i}\right) \partial_{x^{i}}\right|_{p} \\
& =\left.\sum_{i=1}^{n}\left(x^{i} \circ \gamma\right)^{\prime}(0) \partial_{x^{i}}\right|_{p} \\
& =\left.\sum_{i=1}^{n}\left(x^{i} \circ \sigma\right)^{\prime}(0) \partial_{x^{i}}\right|_{p} \\
& =\dot{\sigma}
\end{aligned}
$$

Hence $\gamma \sim \sigma \Rightarrow \dot{\gamma}=\dot{\sigma}$. Now given $\xi \in T M$ take $\left.(0, v)=\tau_{U} \xi\right)$, and $p=\pi(\xi)$, then let $\gamma(t)=x^{-1}(0+t v)$. Then $\dot{\gamma}=\xi$ clearly.
Suppose $\dot{\gamma}=\dot{\sigma}$ then

$$
\begin{aligned}
(x \circ \gamma)^{\prime}(0) & =\left(\left(x_{1} \circ \gamma\right)^{\prime}(0), \ldots,\left(x_{n} \circ \gamma\right)^{\prime}(0)\right) \\
& =\left(\left(x_{1} \circ \sigma\right)^{\prime}(0), \ldots,\left(x_{n} \circ \sigma\right)^{\prime}(0)\right) \\
& =(x \circ \sigma)^{\prime}(0) .
\end{aligned}
$$

Hence the map is injective and surjective, and so an isomorphism.
2. This is a straight-forward application of problem 1-3. We just note that the derivations of \mathbb{R}^{n} are given by partial differentiation, whose basis at a point is given by $\partial_{x^{i}}$.
6.
solution. The end result we are striving for is

$$
\Theta^{-1} T S^{n-1}=\left\{(p, v): p \in S^{n-1},\langle p, v\rangle=0\right\}
$$

Let $p=\left(p_{1}, \ldots, p_{n}\right)$ and assume without loss of generality that and $p_{n}>0$ (otherwise take $k=n$ and reorder $)$. Let $\phi: U_{n+} \rightarrow B^{n-1}$ be the map $\left(p_{1}, \ldots, p_{n}\right) \mapsto\left(p_{1}, \ldots, p_{n-1}\right)$. Then $\psi: B^{n-1} \rightarrow S^{n-1} p \mapsto\left(p, \sqrt{1-|p|^{2}}\right)$.

Set $v=\left.\sum_{k=1}^{n-1} v_{k} \partial_{\phi^{k}}\right|_{p}$. Let $\gamma:(-\delta, \delta) \rightarrow \mathbb{R}^{n}$ be given by $\gamma(t)=p+D \phi^{-1}\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n-1}\end{array}\right)$ and $\alpha_{v}:(-\delta, \delta) \rightarrow B^{n-1} t \mapsto \phi(p)+t\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n-1}\end{array}\right)$. Then
$i_{*} v f=\sum_{k=1}^{n-1} i_{*}\left(\partial_{\phi^{k}}\right)_{p} f$
$=\left.\sum_{k=1}^{n-1} v_{k} \partial_{y^{k}}\right|_{p}\left(f \circ i \circ \phi^{-1}\right)_{\phi(p)}$
$=\left(f \circ \phi^{-1} \circ \alpha_{v}\right)^{\prime}(0)$,
by the chain rule for $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and the fact that $\alpha_{v}^{\prime}(0)=\left(v_{1}, \ldots, v_{n}\right)^{t}$. Thus

$$
\begin{align*}
i_{*} v f & =\left(f \circ \phi^{-1} \circ \alpha_{v}\right)^{\prime}(0) \tag{1}\\
& =\nabla f\left(D \Phi^{-1}\right) \alpha_{v}^{\prime}(0) \tag{2}\\
& =\nabla f \gamma^{\prime}(0) \tag{3}\\
& =(f \circ \gamma)^{\prime}(0)=\dot{\gamma}(f) . \tag{4}
\end{align*}
$$

Where $\gamma=\gamma_{\tilde{v}}$ and $\tilde{v}=D \phi^{-1}\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n-1}\end{array}\right)$. Since

$$
D \Phi^{-1}(y)=\binom{I^{n-1) \times(n-1)}}{u}
$$

where $u=-\left(y^{1}, \ldots, y_{n-1}\right) / \sqrt{1-|y|^{2}}$, we have that

$$
\tilde{v}=\left(v_{1}, \ldots, v_{n-1},-\sum_{k=1}^{n-1} v_{k} p_{k} / p_{n}\right),
$$

where $p=\phi^{-1}(y)$. Then

$$
\tilde{v} \cdot p=0
$$

