Introduction to differential forms
 model solutions 4

Jan Cristina

1.

solution. 1. By splitting our form into a sum of compactly supported prime forms, it suffices to show the claim for a form

$$
\omega=f d x^{1} \wedge \cdots \wedge d \hat{x}^{i} \wedge \cdots \wedge d x^{n}
$$

Furthermore without loss of generality we may take i to be n, so that we prove the claim for $\omega=f d x^{1} \wedge \cdots \wedge d x^{n-1}$, for any compactly supported C^{1} function f. In this case

$$
d \omega=\frac{\partial f}{\partial x^{n}} d x^{1} \wedge \cdots \wedge d x^{n}
$$

hence

$$
\int_{\mathbb{R}^{n}} d \omega=\int_{\mathbb{R}^{n}} \frac{\partial f}{\partial x^{n}} d x .
$$

Because f is compactly supported, so is $\partial_{x^{n}} f$, hence both are contained in some n-interval $I=\left(a_{1}, b_{1}\right) \times \cdots \times\left(a_{n}, b_{n}\right)$ We can then apply Fubini's theorem to yield

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} d \omega & =\left.\int_{\mathbb{R}^{n-1}} \int_{a_{n}}^{b_{n}} \frac{\partial f}{\partial x^{n}}\right|_{\left(x, x_{n}\right)} d x^{n} \ldots d x \\
& =\int_{\mathbb{R}^{n-1}} f\left(x, b_{n}\right)-f\left(x, a_{n}\right) d x \\
& =\int_{\mathbb{R}^{n-1}} 0 d x \\
& =0 .
\end{aligned}
$$

We recall that because f is compactly supported with suppor contained entirely in I, that $f\left(x, b_{n}\right)=f\left(x, a_{n}\right)=0$, because $\left(x, b_{n}\right),\left(x, a_{n}\right) \notin I$.
2. This is a simple application of the fact that

$$
d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{k} \alpha \wedge d \beta .
$$

But by virtue of $\alpha \wedge \beta$ having compact support, the integral of its exterior derivative of satisfies

$$
\int_{\mathbb{R}^{n}} d(\alpha \wedge \beta)=0
$$

But expanding the exterior derivative yields

$$
\int_{\mathbb{R}^{n}} d \alpha \wedge \beta+(-1)^{k} \int_{\mathbb{R}^{n}} \alpha \wedge d \beta=0
$$

which when rearranged gives the result

$$
\int_{\mathbb{R}^{n}} d \alpha \wedge \beta=(-1)^{k+1} \alpha \wedge d \beta
$$

2.

solution. Fix a basis w_{1}, \ldots, w_{n} of \mathbb{R}^{n} such that w_{1}, \ldots, w_{k} forms a basis of W and $w_{k+1}=$ v. Let α^{i} denote the dual basis. We may express a k-form ω as

$$
\omega=\omega_{W}+\alpha_{k+1} \wedge \omega_{v}+\omega_{0}
$$

where

$$
\omega_{W}=\omega_{[k]} \alpha^{[k]} \omega_{v}=\sum_{\substack{J \subset k] \\|J|=k-1}} \omega_{J \cup\{k+1\}} \alpha^{J} \quad \omega_{0}=\sum_{I \subset[n] / / I \cap[n] \backslash[k+1] \neq \varnothing} \omega_{I} \alpha^{I}
$$

Then for any vector in for i the inclusion map $i: D \rightarrow \mathbb{R}^{n}, i^{*} \omega_{0}=0$. Simlarly $\alpha^{k+1} \wedge \omega_{v} \mid P=$ $\alpha^{k+1} \wedge \omega_{v} \mid(P+v)=0$. Hence we are need to show that

$$
\int_{P+v} \omega_{W}-\int_{P} \omega_{W}=\int_{D} d\left(\omega_{W}+\alpha^{k+1} \wedge \omega_{v}\right)
$$

In fact first we will show that

$$
\int_{D} d\left(\alpha^{k+1} \wedge \omega_{v}\right)=0
$$

To see this we note that

$$
\begin{aligned}
\int_{D} d\left(\alpha^{k+1} \wedge \omega_{v}\right) & =-\int_{D} \alpha^{k+1} \wedge d \omega_{v} \\
& =\int_{D} \alpha^{k+1} \wedge \sum_{i=1}^{k} \alpha^{k} \partial_{k} \omega_{v} \\
& =\int_{0}^{1} \int_{\mathbb{R}^{k}} d x^{k+1} \sum_{i=1}^{k} d x^{k} \wedge \Phi^{*} \partial_{k} \omega_{v} \\
& =\int_{0}^{1} \int_{\mathbb{R}^{k}} d \Phi^{*} \omega_{v} \\
& =0
\end{aligned}
$$

by the first problem, as ω was compactly supported and hence so is $\Phi^{*} \omega$. Now we must show that

$$
\int_{P+v} \omega_{W}-\int_{P} \omega_{W}=\int_{D} d \omega_{W}
$$

For this we note that

$$
\begin{aligned}
\int_{D} d \omega_{W} & =\left.\int_{P} \int_{0}^{1} d \omega_{W}(v \wedge \xi)\right|_{x+t v} d t d x \\
& =\int_{P} \int_{0}^{1} \partial_{t} \omega_{x+t v}(\xi) d t d x \\
& =\int_{P} \omega_{x+v}(\xi)-\omega_{x}(\xi) d x \\
& =\int_{P+v} \omega-\int_{P} \omega
\end{aligned}
$$

3.

solution. 1. In order to clarify this we must explicitly state how the operators act. In this case $\theta_{1}: e_{i} \mapsto \varepsilon^{i}$, and $\theta_{2}: e_{i} \wedge e_{j} \mapsto \varepsilon^{i} \wedge \varepsilon^{j}$. The Hodge star acts in the following way:

$$
\begin{cases}\star\left(\varepsilon^{1}\right) & =\varepsilon^{2} \wedge \varepsilon^{3} \\ \star\left(\varepsilon^{2}\right) & =\varepsilon^{3} \wedge \varepsilon^{1} \\ \star\left(\varepsilon^{3}\right) & =\varepsilon^{1} \wedge \varepsilon^{2}\end{cases}
$$

and

$$
\begin{cases}\star\left(\varepsilon^{2} \wedge \varepsilon^{3}\right) & =\varepsilon^{1} \\ \star\left(\varepsilon^{3} \wedge \varepsilon^{1}\right) & =\varepsilon^{2} \\ \star\left(\varepsilon^{1} \wedge \varepsilon^{2}\right) & =\varepsilon^{3}\end{cases}
$$

We can write this more succinctly. Let $(i j k)$ denote a permutation of (123) then we can express the star operator as

$$
\star\left(\varepsilon^{i}\right)=\operatorname{sgn}(i j k) \varepsilon^{j} \wedge \varepsilon^{k} \quad \star\left(\varepsilon^{i} \wedge \varepsilon^{j}\right)=\operatorname{sgn}(i j k) \varepsilon^{k} .
$$

whereas for the cross product we have

$$
e_{i} \times e_{j}=\operatorname{sgn}(i j k) e_{k}
$$

Now we wish to check

$$
\begin{aligned}
\star^{\prime}\left(e_{i} \wedge e_{j}\right) & =\theta_{1}^{-1} \star\left(\varepsilon^{i} \wedge \varepsilon^{j}\right) \\
& =\theta_{1}^{-1} \operatorname{sgn}(i j k)\left(\varepsilon^{k}\right) \\
& =\operatorname{sgn}(i j k) e_{k} .
\end{aligned}
$$

Hence the two are equal.
2. The curl-operator is given by

$$
\operatorname{curl} \sum_{i} X^{i}(x) e_{i}=\sum_{\sigma \in S^{3}} \operatorname{sgn}(\sigma) e_{\sigma(1)} \partial_{x^{\sigma(2)}} X^{\sigma(3)}(x) .
$$

In this case curl can be expressed as $\theta_{1}^{-1} \star d \theta_{1}$.

$$
\begin{aligned}
\theta_{1}^{-1} \star d \theta_{1}\left(\sum_{i} X^{i} e_{i}\right) & =\theta_{1}^{-1} \star d\left(\sum_{i} X^{i} \varepsilon^{i}\right) \\
& =\theta_{1}^{-1} \star \sum_{i, j} \partial_{j} X^{i} \varepsilon^{j} \wedge \varepsilon^{i} \\
& =\theta_{1}^{-1} \sum_{i, j} \partial_{j} X^{i} \varepsilon^{k} \operatorname{sgn}(j i k) \\
& =\sum_{i, j} \operatorname{sgn}(j i k) \partial_{j} X^{i} e_{k} \\
& =\sum_{\sigma \in S^{3}} \operatorname{sgn}(\sigma) e_{\sigma(1)} \partial_{\sigma(2)} X^{\sigma(3)} .
\end{aligned}
$$

3. The divergence operator for a vector field $X=\sum_{i} X^{i}(x) e_{i}$ is given be

$$
\operatorname{div} X=\sum_{i} \partial_{i} X^{i} .
$$

Let us calculate

$$
\begin{aligned}
\star d\left(X\left\llcorner d x^{1} \wedge \cdots \wedge d x^{n}\right)\right. & =\star d\left(\sum_{i} X^{i} e_{i\llcorner }(-1)^{i-1} d x^{i} \wedge d x^{1} \wedge \cdots \wedge d \hat{x}^{i} \wedge \cdots \wedge d x^{n}\right. \\
& =\star d \sum_{i}(-1)^{i-1} X^{i} d x^{1} \wedge \cdots \wedge d \hat{x}^{i} \wedge \cdots \wedge d x^{n} \\
& =\star \sum_{i}(-1)^{i-1} \partial_{i} X^{i} d x^{i} \wedge d x^{1} \wedge \cdots \wedge d \hat{x}^{i} \wedge \cdots \wedge d x^{n} \\
& =\star \sum_{i} \partial_{i} X_{i} d x^{1} \wedge \cdots d x^{n} \\
& =\sum_{i} \partial_{i} X_{i} .
\end{aligned}
$$

4.

solution. Suppose ω is a closed compactly supported k-form for $k<n$. Then by problem 2

$$
\int_{\mathbb{R}^{k} \times\{0\}} \omega-\int_{\mathbb{R}^{k} \times\{v\}} \omega=\int_{D} d \omega=\int_{D} 0=0
$$

where $D=\left\{(x, t v): x \in \mathbb{R}^{k} t \in[0,1]\right\}$. Hence

$$
\int_{\mathbb{R}^{k}} \times\{0\} \omega=\int_{\mathbb{R}^{k} \times\{v\}} \omega .
$$

But for $|v|$ sufficiently large, $\mathbb{R}^{k} \times\{v\}$ does not intersect the support of ω, hence $\int_{\mathbb{R}^{k} \times\{v\}} \omega=$ 0 , but then $\int_{\mathbb{R}^{k} \times\{0\}} \omega=0$.

Hence $\xi=0$ suffices. For $k=n$, the trivial 0 form 1 suffices.
5.
solution. 1. To show this we note that

$$
\begin{aligned}
d^{*} d^{*} & =(-1)^{n k-1} \star d \star(-1)^{n(k+1)-1} \star d \star \\
& =(-1)^{2 n k+n-2} \star d \star^{2} d \star \\
& =(-1)^{n}(-1)^{k(n-k)} \star d^{2} \star \\
& =0 .
\end{aligned}
$$

2. We once again calculate

$$
\begin{aligned}
d^{*} d u & =-1 \star d \star \sum_{i} \partial_{i} u d x^{i} \\
& =-\star d \sum_{i} \partial_{i}(-1)^{i-1} d x^{[n] \backslash\{i\}} \\
& =-\star \sum_{i}(-1)^{i-1} \partial_{i}\left(\partial_{i} u\right) d x^{i} \wedge d x^{[n] \backslash\{i\}} \\
& =-\star \sum_{i} \partial_{i}^{2} u d x^{[n]} \\
& =\sum_{i} D_{i}^{2} u \\
& =-\Delta u .
\end{aligned}
$$

3. It suffices to check this for a prime k-form $\alpha=u d x^{I}$. We define $\sigma(I, J)$ by $\star d x^{I} \wedge d x^{J}=$

$$
\begin{aligned}
& \sigma(I) d x^{I \cup J}, \text { and } \sigma(I):=\sigma(I,[n] \backslash I) . \\
&\left(d^{*} d+d d^{*}\right) u d x^{I}=\left((-1)^{n k-1} \star d \star d+d(-1)^{n(k+1)-1} \star d \star\right) u d x^{I} \\
&=(-1)^{n k-1} \star d \star \sum_{i \in[n] \backslash I} \sigma(i, I) \partial_{i} u d x^{I \cup i} \\
&+(-1)^{n(k+1)-1} d \star d \sigma(I) u d x^{[n] \backslash I} \\
&=(-1)^{n k-1} \star d \sum_{i \in[n] \backslash I} \sigma(i, I) \sigma(I \cup i) \partial_{i} u d x^{[n] \backslash(I \cup i)} \\
&+(-1)^{n(k+1)-1} d \star \sum_{i \in I} \sigma(I) \sigma(i,[n] \backslash I) \partial_{i} u d x^{([n] \backslash I) \cup i} \\
&=(-1)^{n k-1} \star \sum_{i \in[n] \backslash I} \sum_{j \in I \cup i} \sigma(i, I) \sigma(I \cup i) \sigma(j,[n] \backslash(I \cup i)) \partial_{j} \partial_{i} u d x^{[n] \backslash(I \cup i) \cup j} \\
&+(-1)^{n(k+1)} d \sum_{i \in I} \sigma(I) \sigma(i,[n] \backslash I) \sigma(([n] \backslash I) \cup i) \partial_{i} u d x^{I \backslash i} \\
&=(-1)^{n k-1} \sum_{i \in[n] \backslash I} \sum_{j \in I \cup i} \sigma(i, I) \sigma(I \cup i) \sigma(j,[n] \backslash(I \cup i)) \sigma([n] \backslash(I \cup i) \cup j) \partial_{j} \partial_{i} u d x^{(I \cup i) \backslash j} \\
&+(-1)^{n(k+1)-1} \sum_{i \in I} \sum_{j \in[n] \backslash I \cup i} \sigma(I) \sigma(i,[n] \backslash I) \sigma(([n] \backslash I) \cup i) \sigma(j, I \backslash i) \partial_{j} \partial_{i} u d x^{I \backslash i \cup j} \\
&=(-1)^{n k-1} \sum_{i \in[n] \backslash I} \sigma(i, I) \sigma(I \cup i) \sigma(i,[n] \backslash(I \cup i)) \sigma([n] \backslash I) \partial_{i}^{2} u d x^{I} \\
&+(-1)^{n(k+1)-1} \sum_{i \in I} \sigma(I) \sigma(i,[n] \backslash I) \sigma(([n] \backslash I) \cup i) \sigma(i, I \backslash i) \partial_{i}^{2} u d x^{I} \\
&+(-1)^{n k-1} \sum_{i \in[n] \backslash I} \sum_{j \in I} \sigma(i, I) \sigma(I \cup i) \sigma(j,[n] \backslash(I \cup i)) \sigma([n] \backslash(I \cup i) \cup j) \partial_{j} \partial_{i} u d x^{I \backslash i \cup j} \\
&+(-1)^{n(k+1)-1} \sum_{j \in I} \sum_{i \in[n] \backslash I} \sigma(I) \sigma(j,[n] \backslash I) \sigma(([n] \backslash I) \cup j) \sigma(i, I \backslash j) \partial_{j} \partial_{i} u d x^{I \backslash i \cup j}
\end{aligned}
$$

The result will pop out if we can show the following

$$
\begin{aligned}
-1= & (-1)^{n k-1} \sigma(i, I) \sigma(I \cup i) \sigma(i,[n] \backslash(I \cup i)) \sigma([n] \backslash I) \\
-1= & (-1)^{n(k+1)-1} \sigma(I) \sigma(i,[n] \backslash I) \sigma([n] \backslash I \cup i) \sigma(i, I \backslash i) \\
0= & (-1)^{n k-1} \sigma(i, I) \sigma(I \cup i) \sigma(j,[n] \backslash(I \cup i)) \sigma([n] \backslash(I \cup i) \cup j) \\
& +(-1)^{n(k+1)-1} \sigma(I) \sigma(j,[n] \backslash I) \sigma(([n] \backslash I) \cup j) \sigma(i, I \backslash j)
\end{aligned}
$$

To calculate this we note that $\sigma(i, I) d x^{i} \wedge d x^{I}=d x^{I \cup I}$ and $\sigma(I \cup i) d x^{I \cup i} \wedge d x^{[n] \backslash(I \cup i)}=$ $d x^{[n]}$. Combining these we get

$$
\sigma(i, I) \sigma(I \cup i) d x^{i} \wedge d x^{I} \wedge d x^{[n] \backslash(I \cup i)}=d x^{[n]}
$$

We can similarly calculate to get

$$
\sigma(i,[n] \backslash(I \cup i)) \sigma([n] \backslash I) d x^{i} \wedge d x^{[n] \backslash(I \cup i)} \wedge d x^{I}=d x^{n}
$$

We can equate these to to get

$$
\begin{align*}
& \sigma(i,[n] \backslash(I \cup i)) \sigma([n] \backslash I) d x^{i} \wedge d x^{[n] \backslash(I \cup i)} \wedge d x^{I} \\
& = \tag{1}\\
& \begin{aligned}
&(-1)^{k(n-k-1)} \sigma\left(i,[n] \backslash(I \cup I) \sigma(I \cup i) d x^{i} \wedge d x^{I} \wedge d x^{[n] \backslash(I \cup i)}\right) \sigma([n] \backslash I) d x^{i} \wedge d x^{I} \wedge d x^{[n] \backslash(I \cup i)} \\
&=\sigma(i, I) \sigma(I \cup i) d x^{i} \wedge d x^{I} \wedge d x^{[n] \backslash(I \cup i)}
\end{aligned}
\end{align*}
$$

Cancelling out we get that

$$
\sigma(i, I) \sigma(I \cup i) \sigma(i,[n] \backslash(I \cup i)) \sigma([n] \backslash I)=(-1)^{k(n-k-1)}
$$

Then $(-1)^{k(n-k-1)}(-1)^{n k-1}=(-1)^{k^{2}-k-1}=(-1)^{k(k-1)-1}=(-1)^{-1}=-1$. Similarly we get that

$$
\sigma(I) \sigma(i,[n] \backslash I) \sigma([n] \backslash I \cup i) \sigma(i, I \backslash i)=(-1)^{(k-1)(n-k)}
$$

and so $(-1)^{n(k+1)-1}(-1)^{(k-1)(n-k)}=(-1)^{-k^{2}+k-1}=(-1)^{-k(k-1)-1}=-1$
For the other terms we note that once again

$$
\begin{aligned}
d x^{[n]} & =\sigma(i, I) \sigma(I \cup i) d x^{i} \wedge d x^{I} \wedge d x^{[n] \backslash(I \cup i)} \\
& =\sigma(i, I) \sigma(I \cup i) d x^{i} \wedge \sigma(j, I \backslash j) d x^{j} \wedge d x^{I \backslash j} \wedge d x^{[n] \backslash(I \cup i)}
\end{aligned}
$$

and

$$
\begin{aligned}
d x^{[n]} & =\sigma(j,[n] \backslash(I \cup i)) \sigma([n] \backslash(I \cup i) \cup j) d x^{j} \wedge d x^{[n] \backslash I \cup i} d x^{(I \cup i) \backslash j} \\
& =\sigma(j,[n] \backslash(I \cup i)) \sigma([n] \backslash(I \cup i) \cup j) d x^{j} \wedge d x^{[n] \backslash I \cup i} \sigma(i, I \backslash j) d x^{i} \wedge d x^{I \backslash j}
\end{aligned}
$$

Rearranging yields

$$
\begin{align*}
& \sigma(i, I) \sigma(I \cup i) \sigma(j, I \backslash j) d x^{i} \wedge d x^{j} \wedge d x^{I \backslash j} \wedge d x^{[n] \backslash(I \cup i)} \\
& \quad=(-1)^{n-k+(k-1)(n-k-1)} \sigma(j,[n] \backslash(I \cup i)) \sigma([n] \backslash(I \cup i) \cup j) \sigma(i, I \backslash j) \tag{3}
\end{align*}
$$

from which we get that

$$
\begin{align*}
\sigma(i, I) \sigma(I \cup i) \sigma(j,[n] \backslash(I \cup i)) \sigma([n] \backslash(I & \cup i) \cup j) \\
& =(-1)^{n k-k^{2}-k+1} \sigma(j, I \backslash j) \sigma(i, I \backslash j) \tag{4}
\end{align*}
$$

Now let us consider the second term

$$
\begin{aligned}
d x^{[n]} & =\sigma(I) \sigma(j, I \backslash j) d x^{j} \wedge d x^{I \backslash j} \wedge d x^{[n] \backslash I} \\
& =(-1)^{(k-1)(n-k)} \sigma(I) \sigma(j, I \backslash j) d x^{j} \wedge d x^{[n] \backslash I} \wedge d x^{I \backslash j} \\
& =(-1)^{(k-1)(n-k)} \sigma(I) \sigma(j, I \backslash j) d x^{j} \wedge d x^{[n] \backslash I} \wedge d x^{I \backslash j} \\
& =(-1)^{(k-1)(n-k)} \sigma(I) \sigma(j, I \backslash j) \sigma(j,[n] \backslash I) \sigma(([n] \backslash I) \cup j) d x^{n} .
\end{aligned}
$$

Hence we have that

$$
\sigma(I) \sigma(j,[n] \backslash I) \sigma\left(([n] \backslash I) \sigma(i, I \backslash j)=(-1)^{(k-1)(n-k)} \sigma(j, I \backslash j) \sigma(i, I \backslash j)\right.
$$

Now we only need to examine

$$
\begin{aligned}
(-1)^{(k-1)(n-k)}(-1)^{n(k+1)-1}+(-1)^{n k-1}(-1)^{n k-k^{2}-k+1} & =(-1)^{(k+1)(-k)-1}+(-1)^{-k^{2}-k} \\
& =(-1)^{-k^{2}-k-1}+(-1)^{-k^{2}-k} \\
& =0 .
\end{aligned}
$$

This proves the claim.

6.

solution. 1. Define the map $\partial[0,1]^{3} \rightarrow S^{2}$ by

$$
x \mapsto \frac{x-(1 / 2,1 / 2,1 / 2)}{|x-(1 / 2,1 / 2,1 / 2)|} .
$$

This is a map from the boundary of the unit cube to the unite sphere. It is continuous from a compact space, and bijective, and hence a homeomorphism. To see that it is a bijection one need only note that $[0,1]^{3}$ is a convex set, so a ray from $(1 / 2,1 / 2,1 / 2)$ intersects the boundary at exactly one point. The ray then intersects the unit sphere centered at $(1 / 2,1 / 2,1 / 2)$ at exactly one point. This is the bijective correspondence. Thus we only need to find a manifold structure for S^{2}. For this we take the steregraphic projections $\phi_{N}: S^{2} \backslash\{N\} \rightarrow \mathbb{R}^{2}$ and $\phi_{S}: S^{2} \backslash\{S\} \rightarrow \mathbb{R}^{2}$, where $N=(0,0,1)$ and $S=(0,0,-1)$.
Using polar coordinates for \mathbb{R}^{2} we have

$$
\phi_{N}^{-1}(r, \phi)=\frac{1}{r^{2}+1}\left(\begin{array}{c}
2 r \cos \phi \\
2 r \sin \phi \\
r^{2}-1
\end{array}\right) .
$$

While ϕ_{S} takes the following form

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \mapsto\left(\sqrt{1-z^{2}} /(1+z), \arctan (y / x)\right)
$$

under this map the composition takes $\mathbb{R}^{2} \backslash\{0\}$ to $\mathbb{R}^{2} \backslash\{0\}(r, \phi) \mapsto(1 / r, \phi)$.
2. We note that the map $\mathbb{R}^{2} \rightarrow T$

$$
(s, t) \mapsto(\cos (s)(R+r \cos (t)), \sin (s)(R+r \cos (t)), r \sin (t))
$$

fibres through $\mathbb{R} \times S^{1}$ via the map

$$
\phi:(t, \tau) \mapsto(\Re(\tau)(R+r \cos (t)), \Im(\tau)(R+r \cos (t)), r \sin (t)) .
$$

Then the sets

$$
\begin{gathered}
U_{1}=\{(t, \tau): 0<t<2 \pi\} \\
U_{2}=\{(t, \tau): \pi<t<3 \pi\},
\end{gathered}
$$

are homeomorphic to complex (and hence Euclidea) domains via the map $(t, \tau) \mapsto t \tau$. They map injectively onto open sets of T. To see this we note only that τ is uniquely determined by the x and y coordinates. And t is determined modulo 2π.
As such $\left.\phi\right|_{U_{1}} ^{-1}\left(\phi\left(U_{1}\right) \cap \phi\left(U_{2}\right)\right)=U_{1} \backslash\{\pi\} \times \tau$, and $\left.\phi\right|_{U_{2}} ^{-1} \circ \phi(t, \tau)=(t, \tau)$ if $\pi<\tau<2 \pi$ and $\left.\phi\right|_{U_{2}} ^{-1} \circ \phi(t, \tau)=(t+2 \pi, \tau)$ if $0<t<\pi$. Hence this is a smooth manifold.

